ENGN40: Dynamics and Vibrations - Brown University
ENGN40: Dynamics and Vibrations - Brown University
Chapter 5
With competitive price and timely delivery, huaneng sincerely hope to be your supplier and partner.
Vibrations
5.1 Overview of Vibrations
5.1.1 Examples of practical vibration problems
Vibration is a continuous cyclic motion of a structure or a component.
Generally, engineers try to avoid vibrations, because vibrations have a number of unpleasant effects:
·Cyclic motion implies cyclic forces. Cyclic forces are very damaging to materials.
·Even modest levels of vibration can cause extreme discomfort;
·Vibrations generally lead to a loss of precision in controlling machinery.
Examples where vibration suppression is an issue include:
Structural vibrations. Most buildings are mounted on top of special rubber pads, which are intended to isolate the building from ground vibrations. The figure on the right shows vibration isolators being installed under the floor of a building during construction (from www.wilrep.com )
No vibrations course is complete without a mention of the Tacoma Narrows suspension bridge. This bridge, constructed in the s, was at the time the longest suspension bridge in the world. Because it was a new design, it suffered from an unforseen source of vibrations. In high wind, the roadway would exhibit violent torsional vibrations, as shown in the picture below.
You can watch newsreel footage of the vibration and even the final collapse at http://www.youtube.com/watch?v=HxTZ446tbzE To the credit of the designers, the bridge survived for an amazingly long time before it finally failed. It is thought that the vibrations were a form of self-excited vibration known as `flutter,’ or ‘galloping’ A similar form of vibration is known to occur in aircraft wings. Interestingly, modern cable stayed bridges that also suffer from a new vibration problem: the cables are very lightly damped and can vibrate badly in high winds (this is a resonance problem, not flutter). You can find a detailed article on the subject at www.fhwa.dot.gov/bridge/pubs//chap3.cfm. Some bridge designs go as far as to incorporate active vibration suppression systems in their cables.
Vehicle suspension systems are familiar to everyone, but continue to evolve as engineers work to improve vehicle handling and ride (the figure above is from http://www.altairhyperworks.com. A radical new approach to suspension design emerged in when a research group led by Malcolm Smith at Cambridge University invented a new mechanical suspension element they called an ‘inerter’. This device can be thought of as a sort of generalized spring, but instead of exerting a force proportional to the relative displacement of its two ends, the inerter exerts a force that is proportional to the relative acceleration of its two ends. An actual realization is shown in the figure. You can find a detailed presentation on the theory behind the device at http://www-control.eng.cam.ac.uk/~mcs/lecture_j.pdf The device was adopted in secret by the McLaren Formula 1 racing team in (they called it the ‘J damper’, and a scandal erupted in Formula 1 racing when the Renault team managed to steal drawings for the device, but were unable to work out what it does. The patent for the device has now been licensed Penske and looks to become a standard element in formula 1 racing. It is only a matter of time before it appears on vehicles available to the rest of us.
Precision Machinery: The picture on the right shows one example of a precision instrument. It is essential to isolate electron microscopes from vibrations. A typical transmission electron microscope is designed to resolve features of materials down to atomic length scales. If the specimen vibrates by more than a few atomic spacings, it will be impossible to see! This is one reason that electron microscopes are always located in the basement – MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@@ the basement of a building vibrates much less than the upper floors. Professor K.-S. Kim at Brown recently invented and patented a new vibration isolation system to support his atomic force microscope on the 7th floor of the Barus-Holley building – MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@@ you can find the patent at United States Patent, Patent Number 7,543,791.
Here is another precision instrument that is very sensitive to vibrations.
The picture shows features of a typical hard disk drive. It is particularly important to prevent vibrations in the disk stack assembly and in the disk head positioner, since any relative motion between these two components will make it impossible to read data. The spinning disk stack assembly has some very interesting vibration characteristics (which fortunately for you, is beyond the scope of this course).
Vibrations are not always undesirable, however. On occasion, they can be put to good use. Examples of beneficial applications of vibrations include ultrasonic probes, both for medical application and for nondestructive testing. The picture shows a medical application of ultrasound: it is an image of someone’s colon. This type of instrument can resolve features down to a fraction of a millimeter, and is infinitely preferable to exploratory surgery. Ultrasound is also used to detect cracks in aircraft and structures.
Musical instruments and loudspeakers are a second example of systems which put vibrations to good use. Finally, most mechanical clocks use vibrations to measure time.
5.1.2 Vibration Measurement
When faced with a vibration problem, engineers generally start by making some measurements to try to isolate the cause of the problem. There are two common ways to measure vibrations:
1. An accelerometer is a small electro-mechanical device that gives an electrical signal proportional to its acceleration. The picture shows a typical 3 axis MEMS accelerometer (you’ll use one in a project in this course). MEMS accelerometers should be selected very carefully – MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@@ you can buy cheap accelerometers for less than $50, but these are usually meant just as sensors, not for making precision measurements. For measurements you’ll need to select one that is specially designed for the frequency range you are interested in sensing. The best accelerometers are expensive ‘inertial grade’ versions (suitable for so-called ‘inertial navigtation’ in which accelerations are integrated to determine position) which are often use Kalman filtering to fuse the accelerations with GPS measurements.
2.A displacement transducer is similar to an accelerometer, but gives an electrical signal proportional to its displacement.
Displacement transducers are generally preferable if you need to measure low frequency vibrations; accelerometers behave better at high frequencies.
5.1.3 Features of a Typical Vibration Response
The picture below shows a typical signal that you might record using an accelerometer or displacement transducer.
Important features of the response are
The signal is often (although not always) periodic: that is to say, it repeats itself at fixed intervals of time. Vibrations that do not repeat themselves in this way are said to be random. All the systems we consider in this course will exhibit periodic vibrations.
The PERIOD of the signal, T, is the time required for one complete cycle of oscillation, as shown in the picture.
The FREQUENCY of the signal, f, is the number of cycles of oscillation per second. Cycles per second is often given the name Hertz: thus, a signal which repeats 100 times per second is said to oscillate at 100 Hertz.
The ANGULAR FREQUENCY of the signal, ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@@ , is defined as ω=2πf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2 da9iaaikdacqaHapaCcaWGMbaaaa@3C71@ . We specify angular frequency in radians per second. Thus, a signal that oscillates at 100 Hz has angular frequency 200π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaaIWa GaaGimaiabec8aWbaa@3A27@ radians per second.
Period, frequency and angular frequency are related by
f= 1 T ω=2πf= 2π T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacqGH9a qpdaWcaaqaaiaaigdaaeaacaWGubaaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeM8a3jabg2da9i abgkdaYiabec8aWjaadAgacqGH9aqpdaWcaaqaaiaaikdacqaHapaC aeaacaWGubaaaaaa@@
The PEAK-TO-PEAK AMPLITUDE of the signal, A, is the difference between its maximum value and its minimum value, as shown in the picture
The AMPLITUDE of the signal is generally taken to mean half its peak to peak amplitude. Engineers sometimes use amplitude as an abbreviation for peak to peak amplitude, however, so be careful.
The ROOT MEAN SQUARE AMPLITUDE or RMS amplitude is defined as
σ= { 1 T ∫ 0 T [ y(t) ] 2 dt } 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabg2 da9maacmaabaWaaSaaaeaacaaIXaaabaGaamivaaaadaWdXbqaamaa dmaabaGaamyEaiaacIcacaWG0bGaaiykaaGaay5waiaaw2faamaaCa aaleqabaGaaGOmaaaaaeaacaaIWaaabaGaamivaaqdcqGHRiI8aOGa amizaiaadshaaiaawUhacaGL9baadaahaaWcbeqaaiaaigdacaGGVa GaaGOmaaaaaaa@4B36@
5.1.4 Harmonic Oscillations
Harmonic oscillations are a particularly simple form of vibration response. A conservative spring-mass system will exhibit harmonic motion – MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@@ if you have Java, Internet Explorer (or a browser plugin that allows you to run IE in another browser) you can run a Java Applet to visualize the motion. You can find instructions for installing Java, the IE plugins, and giving permission for the Applet to run here. The address for the SHM simulator (cut and paste this into the Internet Explorer address bar)
http://www.brown.edu/Departments/Engineering/Courses/En4/java/shm.html
If the spring is perturbed from its static equilibrium position, it vibrates (press `start’ to watch the vibration). We will analyze the motion of the spring mass system soon. We will find that the displacement of the mass from its static equilibrium position, x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@@ , has the form
x(t)=ΔXsin(ωt+ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa GaamiDaiaacMcacqGH9aqpcqqHuoarcaWGybGaci4CaiaacMgacaGG UbGaaiikaiabeM8a3jaaykW7caWG0bGaey4kaSIaeqy1dyMaaiykaa aa@47FD@
Here, ΔX MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadI faaaa@387C@ is the amplitude of the displacement, ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@@ is the frequency of oscillations in radians per second, and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@@ (in radians) is known as the `phase’ of the vibration. Vibrations of this form are said to be Harmonic.
Typical values for amplitude and frequency are listed in the table below
We can also express the displacement in terms of its period of oscillation T
x(t)=ΔXsin( 2π T t+ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa GaamiDaiaacMcacqGH9aqpcqqHuoarcaWGybGaci4CaiaacMgacaGG UbWaaeWaaeaadaWcaaqaaiaaikdacqaHapaCaeaacaWGubaaaiaads hacqGHRaWkcqaHvpGzaiaawIcacaGLPaaaaaa@@
The velocity v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhaaaa@@ and acceleration a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggaaaa@371F@ of the mass follow as
v(t)=ΔVsin( ωt+ϕ ) V 0 =ωΔXcos( ωt+ϕ ) a(t)=−ΔAsin( ωt+ϕ )ΔA=ωΔV= ω 2 ΔX MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamODai aacIcacaWG0bGaaiykaiabg2da9iabfs5aejaadAfaciGGZbGaaiyA aiaac6gadaqadaqaaiabeM8a3jaaykW7caWG0bGaey4kaSIaeqy1dy gacaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGwbWaaSba aSqaaiaaicdaaeqaaOGaeyypa0JaeqyYdCNaeuiLdqKaamiwaiGaco gacaGGVbGaai4CamaabmaabaGaeqyYdCNaaGPaVlaadshacqGHRaWk cqaHvpGzaiaawIcacaGLPaaaaeaacaWGHbGaaiikaiaadshacaGGPa Gaeyypa0JaeyOeI0IaeuiLdqKaamyqaiGacohacaGGPbGaaiOBamaa bmaabaGaeqyYdCNaaGPaVlaadshacqGHRaWkcqaHvpGzaiaawIcaca GLPaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq qHuoarcaWGbbGaeyypa0JaaGPaVlaaykW7caaMc8UaeqyYdCNaeuiL dqKaamOvaiabg2da9iabeM8a3naaCaaaleqabaGaaGOmaaaakiabfs 5aejaadIfaaaaa@B506@
Here, ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadA faaaa@387A@ is the amplitude of the velocity, and ΔA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadg eaaaa@@ is the amplitude of the acceleration. Note the simple relationships between acceleration, velocity and displacement amplitudes.
Surprisingly, many complex engineering systems behave just like the spring mass system we are looking at here. To describe the behavior of the system, then, we need to know three things (in order of importance):
(1) The frequency (or period) of the vibrations
(2) The amplitude of the vibrations
(3) Occasionally, we might be interested in the phase, but this is rare.
So, our next problem is to find a way to calculate these three quantities for engineering systems.
We will do this in stages. First, we will analyze a number of freely vibrating, conservative systems. Second, we will examine free vibrations in a dissipative system, to show the influence of energy losses in a mechanical system. Finally, we will discuss the behavior of mechanical systems when they are subjected to oscillating forces.
5.2 Free vibration of conservative, single degree of freedom, linear systems.
First, we will explain what is meant by the title of this section.
Recall that a system is conservative if energy is conserved, i.e. potential energy + kinetic energy = constant during motion.
Free vibration means that no time varying external forces act on the system.
A system has one degree of freedom if its motion can be completely described by a single scalar variable. We’ll discuss this in a bit more detail later.
A system is said to be linear if its equation of motion is linear. We will see what this means shortly.
It turns out that all 1DOF, linear conservative systems behave in exactly the same way. By analyzing the motion of one representative system, we can learn about all others.
We will follow standard procedure, and use a spring-mass system as our representative example.
Problem: The figure shows a spring mass system. The spring has stiffness k and unstretched length L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaaGimaaqabaaaaa@37F1@ . The mass is released with velocity v 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaaGimaaqabaaaaa@381A@ from position s 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaWgaa WcbaGaaGimaaqabaaaaa@@ at time t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaaaaa@38F2@ . Find s(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohacaGGOa GaamiDaiaacMcaaaa@@ .
There is a standard approach to solving problems like this
(i) Get a differential equation for s using F=ma (or other methods to be discussed)
(ii) Solve the differential equation.
The picture shows a free body diagram for the mass.
Newton’s law of motion states that
F=ma⇒− F s i+(N−mg)j=m d 2 s d t 2 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAeacqGH9a qpcaWGTbGaaCyyaiabgkDiElabgkHiTiaadAeadaWgaaWcbaGaam4C aaqabaGccaWHPbGaey4kaSIaaiikaiaad6eacqGHsislcaWGTbGaam 4zaiaacMcacaWHQbGaeyypa0JaamyBamaalaaabaGaamizamaaCaaa leqabaGaaGOmaaaakiaadohaaeaacaWGKbGaamiDamaaCaaaleqaba GaaGOmaaaaaaGccaWHPbaaaa@4F8E@
The spring force is related to the length of the spring by F s =k(s− L 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaam4CaaqabaGccqGH9aqpcaWGRbGaaiikaiaadohacqGHsisl caWGmbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaaa@3F28@ . The i component of the equation of motion and this equation then shows that
m d 2 s d t 2 +ks=k L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWcaa qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGZbaabaGaamizaiaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaam4Aaiaadohacq GH9aqpcaWGRbGaamitamaaBaaaleaacaaIWaaabeaaaaa@435C@
This is our equation of motion for s.
Now, we need to solve this equation. We could, of course, use Matlab to do this – MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@@ in fact here is the Matlab solution.
syms m
k L0 s0 v0 real
syms v(t)
s(t)
assume(k>0); assume(m>0);
diffeq = m*diff(s(t),t,2) + k*s(t) == k*L0;
v(t) = diff(s(t),t);
IC = [s(0)==s0, v(0)==v0];
s(t) = dsolve(diffeq,IC)
In practice we usually don’t need to use matlab (and of course in exams you won’t have access to matlab!)
5.2.1 Using tabulated solutions to solve equations of motion for vibration problems
Note that all vibrations problems have similar equations of motion. Consequently, we can just solve the equation once, record the solution, and use it to solve any vibration problem we might be interested in. The procedure to solve any vibration problem is:
1. Derive the equation of motion, using Newton’s laws (or sometimes you can use energy methods, as discussed in Section 5.3)
2. Do some algebra to arrange the equation of motion into a standard form
3. Look up the solution to this standard form in a table of solutions to vibration problems.
We have provided a table of standard solutions as a separate document that you can download and print for future reference. Actually, this is exactly what MATLAB is doing when it solves a differential equation for you – MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugGbabaaa aaaaaapeGaa83eGaaa@@ it is doing sophisticated pattern matching to look up the solution you want in a massive internal database.
We will illustrate the procedure using many examples.
5.2.2 Solution to the equation of motion for an undamped spring-mass system
We would like to solve
m d 2 s d t 2 +ks=k L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWcaa qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGZbaabaGaamizaiaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaam4Aaiaadohacq GH9aqpcaWGRbGaamitamaaBaaaleaacaaIWaaabeaaaaa@435C@
with initial conditions ds dt = v 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadohaaeaacaWGKbGaamiDaaaacqGH9aqpcaWG2bWaaSbaaSqa aiaaicdaaeqaaaaa@3CF3@ from position s 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaWgaa WcbaGaaGimaaqabaaaaa@@ at time t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaaaaa@38F2@ .
We therefore consult our list of solutions to differential equations, and observe that it gives the solution to the following equation
1 ω n 2 d 2 x d t 2 +x=C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaamiEaiabg2da 9iaadoeaaaa@@
This is very similar to our equation, but not quite the same. To make them identical, divide our equation through by k
m k d 2 s d t 2 +s= L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBaaqaaiaadUgaaaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaa aOGaam4CaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaaki abgUcaRiaadohacqGH9aqpcaWGmbWaaSbaaSqaaiaaicdaaeqaaaaa @427C@
We see that if we define
m k = 1 ω n 2 ⇒ ω n = k m x=sC= L 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBaaqaaiaadUgaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaeqyYdC3a a0baaSqaaiaad6gaaeaacaaIYaaaaaaakiabgkDiElabeM8a3naaBa aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa baGaamyBaaaaaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamiEaiabg2da9i aadohacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4qaiabg2da9i aadYeadaWgaaWcbaGaaGimaaqabaaaaa@7DFF@
then our equation is equivalent to the standard one.
HEALTH WARNING: it is important to note that this substitution only works if L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaaGimaaqabaaaaa@37F1@ is constant, so its time derivative is zero.
The solution for x is
x=C+ X 0 sin( ω n t+ϕ ) X 0 = ( x 0 −C) 2 + v 0 2 / ω n 2 ϕ= tan −1 ( ( x 0 −C) ω n v 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaamiEai abg2da9iaadoeacqGHRaWkcaWGybWaaSbaaSqaaiaaicdaaeqaaOGa ci4CaiaacMgacaGGUbWaaeWaaeaacqaHjpWDdaWgaaWcbaGaamOBaa qabaGccaWG0bGaey4kaSIaeqy1dygacaGLOaGaayzkaaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaaiaadIfadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaGcaaqaaiaacIcacaWG4bWaaSba aSqaaiaaicdaaeqaaOGaeyOeI0Iaam4qaiaacMcadaahaaWcbeqaai aaikdaaaGccqGHRaWkcaWG2bWaa0baaSqaaiaaicdaaeaacaaIYaaa aOGaai4laiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaeqaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlabew9aMjabg2da9iGacshacaGGHbGaaiOBamaaCa aaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWaaSaaaeaacaGGOaGa amiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadoeacaGGPaGaeq yYdC3aaSbaaSqaaiaad6gaaeqaaaGcbaGaamODamaaBaaaleaacaaI WaaabeaaaaaakiaawIcacaGLPaaaaaaa@84A4@
Here, x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGimaaqabaaaaa@381C@ and v 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaaGimaaqabaaaaa@381A@ are the initial value of x and dx/dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWG4b Gaai4laiaadsgacaWG0baaaa@3AB5@ its time derivative, which must be computed from the initial values of s and its time derivative
x 0 = s 0 v 0 = dx dt = ds dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaWGZbWaaSbaaSqaaiaaicdaaeqa aOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAhadaWgaaWcbaGa aGimaaqabaGccqGH9aqpdaWcaaqaaiaadsgacaWG4baabaGaamizai aadshaaaGaeyypa0ZaaSaaaeaacaWGKbGaam4CaaqaaiaadsgacaWG 0baaaaaa@5AC5@
When we present the solution, we have a choice of writing down the solution for x, and giving formulas for the various terms in the solution (this is what is usually done):
x= X 0 sin( ω n t+ϕ ) ω n = k m X 0 = ( s 0 − L 0 ) 2 + v 0 2 / ω n 2 ϕ= tan −1 ( ( s 0 − L 0 ) ω n v 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaamiEai abg2da9iaadIfadaWgaaWcbaGaaGimaaqabaGcciGGZbGaaiyAaiaa c6gadaqadaqaaiabeM8a3naaBaaaleaacaWGUbaabeaakiaadshacq GHRaWkcqaHvpGzaiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8oabaGaeqyYdC3aaSbaaSqaaiaad6gaae qaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaadUgaaeaacaWGTbaaaaWc beaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadIfadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaGc aaqaamaabmaabaGaam4CamaaBaaaleaacaaIWaaabeaakiabgkHiTi aadYeadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaWG2bWaa0baaSqaaiaaicdaaeaaca aIYaaaaOGaai4laiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaa aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabew9aMjabg2da9iGacshacaGGHbGaaiOB amaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWaaSaaaeaaca GGOaGaam4CamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadYeadaWg aaWcbaGaaGimaaqabaGccaGGPaGaeqyYdC3aaSbaaSqaaiaad6gaae qaaaGcbaGaamODamaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGL Paaaaaaa@@
Alternatively, we can express all the variables in the standard solution in terms of s
s= L 0 + ( s 0 − L 0 ) 2 + v 0 2 / ω n 2 sin( k m t+ tan −1 ( ( s 0 − L 0 ) ω n v 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohacqGH9a qpcaWGmbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSYaaOaaaeaadaqa daqaaiaadohadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGmbWaaS baaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaamODamaaDaaaleaacaaIWaaabaGaaGOmaaaaki aac+cacqaHjpWDdaqhaaWcbaGaamOBaaqaaiaaikdaaaaabeaakiGa cohacaGGPbGaaiOBamaabmaabaWaaOaaaeaadaWcaaqaaiaadUgaae aacaWGTbaaaaWcbeaakiaadshacqGHRaWkciGG0bGaaiyyaiaac6ga daahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaamaalaaabaGaai ikaiaadohadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGmbWaaSba aSqaaiaaicdaaeqaaOGaaiykaiabeM8a3naaBaaaleaacaWGUbaabe aaaOqaaiaadAhadaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzk aaaacaGLOaGaayzkaaaaaa@@
But this solution looks very messy (more like the Matlab solution).
Observe that:
The mass oscillates harmonically, as discussed in the preceding section;
The angular frequency of oscillation, ω n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGUbaabeaaaaa@@ , is a characteristic property of the system, and is independent of the initial position or velocity of the mass. This is a very important observation, and we will expand upon it below. The characteristic frequency is known as the natural frequency of the system.
Increasing the stiffness of the spring increases the natural frequency of the system;
Increasing the mass reduces the natural frequency of the system.
5.2.3 Natural Frequencies and Mode Shapes.
We saw that the spring mass system described in the preceding section likes to vibrate at a characteristic frequency, known as its natural frequency. This turns out to be a property of all stable mechanical systems.
All stable, unforced, mechanical systems vibrate harmonically at certain discrete frequencies, known as natural frequencies of the system.
For the spring — MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@@ mass system, we found only one natural frequency. More complex systems have several natural frequencies. For example, the system of two masses shown below has two natural frequencies, given by
ω 1 = k m , ω 2 = 3k m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaaIXaaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa baGaamyBaaaaaSqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaey ypa0ZaaOaaaeaadaWcaaqaaiaaiodacaWGRbaabaGaamyBaaaaaSqa baaaaa@5A78@
A system with three masses would have three natural frequencies, and so on.
In general, a system with more than one natural frequency will not vibrate harmonically.
For example, suppose we start the two mass system vibrating, with initial conditions
x 1 = x o 1 d x 1 dt =0 x 2 = x o 2 d x 2 dt =0 }t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaciaaeaqabe aacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaCbiaeaacaWG 4baaleqabaGaam4BaaaakmaaBaaaleaacaaIXaaabeaakiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaadsgacaWG4bWaaSbaaS qaaiaaigdaaeqaaaGcbaGaamizaiaadshaaaGaeyypa0JaaGimaaqa aiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWfGaqaaiaadI haaSqabeaacaWGVbaaaOWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVpaalaaabaGaamizaiaadIhadaWgaaWc baGaaGOmaaqabaaakeaacaWGKbGaamiDaaaacqGH9aqpcaaIWaaaai aaw2haaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadshacqGH9aqpcaaIWa aaaa@8E1F@
The response may be shown (see sect 5.5 if you want to know how) to be
x 1 = A 1 sin( ω 1 t+ ϕ 1 )+ A 2 sin( ω 2 t+ ϕ 2 ) x 2 = A 1 sin( ω 1 t+ ϕ 1 )− A 2 sin( ω 2 t+ ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaaIXaaabeaakiabg2da9iaadgeadaWgaaWcbaGaaGym aaqabaGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3naaBaaale aacaaIXaaabeaakiaadshacqGHRaWkcqaHvpGzdaWgaaWcbaGaaGym aaqabaaakiaawIcacaGLPaaacaaMc8UaaGPaVlabgUcaRiaadgeada WgaaWcbaGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gadaqadaqaaiab eM8a3naaBaaaleaacaaIYaaabeaakiaadshacqGHRaWkcqaHvpGzda WgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacaWG4bWaaSba aSqaaiaaikdaaeqaaOGaeyypa0JaamyqamaaBaaaleaacaaIXaaabe aakiGacohacaGGPbGaaiOBamaabmaabaGaeqyYdC3aaSbaaSqaaiaa igdaaeqaaOGaamiDaiabgUcaRiabew9aMnaaBaaaleaacaaIXaaabe aaaOGaayjkaiaawMcaaiaaykW7caaMc8UaeyOeI0IaamyqamaaBaaa leaacaaIYaaabeaakiGacohacaGGPbGaaiOBamaabmaabaGaeqyYdC 3aaSbaaSqaaiaaikdaaeqaaOGaamiDaiabgUcaRiabew9aMnaaBaaa leaacaaIYaaabeaaaOGaayjkaiaawMcaaaaaaa@79D2@
with
A 1 = 1 2 ( x 1 o + x 2 o ) A 2 = 1 2 ( x 1 o − x 2 o ) ϕ 1 = π 2 ϕ 2 = π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyqam aaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaa ikdaaaWaaeWaaeaadaWfGaqaaiaadIhadaWgaaWcbaGaaGymaaqaba aabeqaaiaad+gaaaGccqGHRaWkdaWfGaqaaiaadIhadaWgaaWcbaGa aGOmaaqabaaabeqaaiaad+gaaaaakiaawIcacaGLPaaacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamyqamaaBaaaleaacaaIYaaabeaakiabg2da9maalaaa baGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWfGaqaaiaadIhadaWgaa WcbaGaaGymaaqabaaabeqaaiaad+gaaaGccqGHsisldaWfGaqaaiaa dIhadaWgaaWcbaGaaGOmaaqabaaabeqaaiaad+gaaaaakiaawIcaca GLPaaaaeaacqaHvpGzdaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWc aaqaaiabec8aWbqaaiaaikdaaaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew9aMnaa BaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiWdahabaGaaG Omaaaaaaaa@BC67@
In general, the vibration response will look complicated, and is not harmonic. The animation above shows a typical example (if you are using the pdf version of these notes the animation will not work)
However, if we choose the special initial conditions:
x 1 o = X 0 x 2 o = X 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEamaaBaaaleaacaaIXaaabeaaaeqabaGaam4Baaaakiabg2da9iaa dIfadaWgaaWcbaGaaGimaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8+aaCbiaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaqabeaaca WGVbaaaOGaeyypa0JaamiwamaaBaaaleaacaaIWaaabeaaaaa@@
then the response is simply
x 1 = X 0 sin( ω 1 t+ ϕ 1 ) x 2 = X 0 sin( ω 1 t+ ϕ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaaIXaaabeaakiabg2da9iaadIfadaWgaaWcbaGaaGim aaqabaGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3naaBaaale aacaaIXaaabeaakiaadshacqGHRaWkcqaHvpGzdaWgaaWcbaGaaGym aaqabaaakiaawIcacaGLPaaacaaMc8UaaGPaVdqaaiaadIhadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaWGybWaaSbaaSqaaiaaicdaaeqa aOGaci4CaiaacMgacaGGUbWaaeWaaeaacqaHjpWDdaWgaaWcbaGaaG ymaaqabaGccaWG0bGaey4kaSIaeqy1dy2aaSbaaSqaaiaaigdaaeqa aaGccaGLOaGaayzkaaGaaGPaVlaaykW7aaaa@5D55@
i.e., both masses vibrate harmonically, at the first natural frequency, as shown in the animation to the right.
Similarly, if we choose
x 1 o = X 0 x 2 o =− X 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEamaaBaaaleaacaaIXaaabeaaaeqabaGaam4Baaaakiabg2da9iaa dIfadaWgaaWcbaGaaGimaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8+aaCbiaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaqabeaaca WGVbaaaOGaeyypa0JaeyOeI0IaamiwamaaBaaaleaacaaIWaaabeaa aaa@@
then
x 1 = X 0 sin( ω 2 t+ ϕ 2 ) x 2 =− X 0 sin( ω 2 t+ ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaaIXaaabeaakiabg2da9iaadIfadaWgaaWcbaGaaGim aaqabaGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3naaBaaale aacaaIYaaabeaakiaadshacqGHRaWkcqaHvpGzdaWgaaWcbaGaaGOm aaqabaaakiaawIcacaGLPaaacaaMc8UaaGPaVdqaaiaadIhadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcqGHsislcaWGybWaaSbaaSqaaiaa icdaaeqaaOGaci4CaiaacMgacaGGUbWaaeWaaeaacqaHjpWDdaWgaa WcbaGaaGOmaaqabaGccaWG0bGaey4kaSIaeqy1dy2aaSbaaSqaaiaa ikdaaeqaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7aaaa@5E46@
i.e., the system vibrates harmonically, at the second natural frequency.
The special initial displacements of a system that cause it to vibrate harmonically are called `mode shapes’ for the system.
If a system has several natural frequencies, there is a corresponding mode of vibration for each natural frequency.
The natural frequencies are arguably the single most important property of any mechanical system. This is because, as we shall see, the natural frequencies coincide (almost) with the system’s resonant frequencies. That is to say, if you apply a time varying force to the system, and choose the frequency of the force to be equal to one of the natural frequencies, you will observe very large amplitude vibrations.
When designing a structure or component, you generally want to control its natural vibration frequencies very carefully. For example, if you wish to stop a system from vibrating, you need to make sure that all its natural frequencies are much greater than the expected frequency of any forces that are likely to act on the structure. If you are designing a vibration isolation platform, you generally want to make its natural frequency much lower than the vibration frequency of the floor that it will stand on. Design codes usually specify allowable ranges for natural frequencies of structures and components.
Once a prototype has been built, it is usual to measure the natural frequencies and mode shapes for a system. This is done by attaching a number of accelerometers to the system, and then hitting it with a hammer (this is usually a regular rubber tipped hammer, which might be instrumented to measure the impulse exerted by the hammer during the impact). By trial and error, one can find a spot to hit the device so as to excite each mode of vibration independent of any other. You can tell when you have found such a spot, because the whole system vibrates harmonically. The natural frequency and mode shape of each vibration mode is then determined from the accelerometer readings.
Impulse hammer tests can even be used on big structures like bridges or buildings – MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@@ but you need a big hammer. In a recent test on a new cable stayed bridge in France, the bridge was excited by first attaching a barge to the center span with a high strength cable; then the cable was tightened to raise the barge part way out of the water; then, finally, the cable was released rapidly to set the bridge vibrating.
5.2.4 Calculating the number of degrees of freedom (and natural frequencies) of a system
When you analyze the behavior a system, it is helpful to know ahead of time how many vibration frequencies you will need to calculate. There are various ways to do this. Here are some rules that you can apply:
The number of degrees of freedom is equal to the number of independent coordinates required to describe the motion. This is only helpful if you can see by inspection how to describe your system. For the spring-mass system in the preceding section, we know that the mass can only move in one direction, and so specifying the length of the spring s will completely determine the motion of the system. The system therefore has one degree of freedom, and one vibration frequency. Section 5.6 provides several more examples where it is fairly obvious that the system has one degree of freedom.
For a 2D system, the number of degrees of freedom can be calculated from the equation
n=3r+2p− N c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaamOCaiabgUcaRiaaikdacaWGWbGaeyOeI0IaamOtamaa BaaaleaacaWGJbaabeaaaaa@3F4E@
where:
r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@@ is the number of rigid bodies in the system
p is the number of particles in the system
N c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaam4yaaqabaaaaa@@ is the number of constraints (or, if you prefer, independent reaction forces) in the system.
To be able to apply this formula you need to know how many constraints appear in the problem. Constraints are imposed by things like rigid links, or contacts with rigid walls, which force the system to move in a particular way. The numbers of constraints associated with various types of 2D connections are listed in the table below. Notice that the number of constraints is always equal to the number of reaction forces you need to draw on an FBD to represent the joint
For a 3D system, the number of degrees of freedom can be calculated from the equation
n=6r+3p− N c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaI2aGaamOCaiabgUcaRiaaiodacaWGWbGaeyOeI0IaamOtamaa BaaaleaacaWGJbaabeaaaaa@3F52@
where the symbols have the same meaning as for a 2D system. A table of various constraints for 3D problems is given below.
5.2.4 Calculating natural frequencies for 1DOF conservative systems
In light of the discussion in the preceding section, we clearly need some way to calculate natural frequencies for mechanical systems. We do not have time in this course to discuss more than the very simplest mechanical systems. We will therefore show you some tricks for calculating natural frequencies of 1DOF, conservative, systems. It is best to do this by means of examples.
Example 1: The spring-mass system revisited
Calculate the natural frequency of vibration for the system shown in the figure. Assume that the contact between the block and wedge is frictionless. The spring has stiffness k and unstretched length L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaaGimaaqabaaaaa@37F1@
Our first objective is to get an equation of motion for s. We could do this by drawing a FBD, writing down Newton’s law, and looking at its components. However, for 1DOF systems it turns out that we can derive the EOM very quickly using the kinetic and potential energy of the system.
The potential energy and kinetic energy can be written down as:
V= 1 2 k ( s− L 0 ) 2 −mgssinαT= 1 2 m ( ds dt ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadUgadaqadaqaaiaadoha cqGHsislcaWGmbWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyBaiaadEgacaWGZbGa aGPaVlaaykW7ciGGZbGaaiyAaiaac6gacqaHXoqycaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8Uaamivaiabg2da9maalaaabaGaaGymaaqaai aaikdaaaGaamyBamaabmaabaWaaSaaaeaacaWGKbGaam4Caaqaaiaa dsgacaWG0baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaa a@6AAF@
(The second term in V is the gravitational potential energy – MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@@ it is negative because the height of the mass decreases with increasing s). Now, note that since our system is conservative
T+V=constant ⇒ d dt ( T+V )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivai abgUcaRiaadAfacqGH9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiD aiaabggacaqGUbGaaeiDaaqaaiabgkDiEpaalaaabaGaamizaaqaai aadsgacaWG0baaamaabmaabaGaamivaiabgUcaRiaadAfaaiaawIca caGLPaaacqGH9aqpcaaIWaaaaaa@4C75@
Differentiate our expressions for T and V (use the chain rule) to see that
m ds dt d 2 s d t 2 +k(s− L 0 ) ds dt −mg ds dt sinα=0 ⇒ m k d 2 s d t 2 +s= L 0 + mg k sinα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aalaaabaGaamizaiaadohaaeaacaWGKbGaamiDaaaadaWcaaqaaiaa dsgadaahaaWcbeqaaiaaikdaaaGccaWGZbaabaGaamizaiaadshada ahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaam4AaiaacIcacaWGZbGa eyOeI0IaamitamaaBaaaleaacaaIWaaabeaakiaacMcadaWcaaqaai aadsgacaWGZbaabaGaamizaiaadshaaaGaeyOeI0IaamyBaiaadEga daWcaaqaaiaadsgacaWGZbaabaGaamizaiaadshaaaGaci4CaiaacM gacaGGUbGaeqySdeMaeyypa0JaaGimaaqaaiabgkDiEpaalaaabaGa amyBaaqaaiaadUgaaaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYa aaaOGaam4CaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaa kiabgUcaRiaadohacqGH9aqpcaWGmbWaaSbaaSqaaiaaicdaaeqaaO Gaey4kaSYaaSaaaeaacaWGTbGaam4zaaqaaiaadUgaaaGaci4Caiaa cMgacaGGUbGaeqySdegaaaa@6F17@
Finally, we must turn this equation of motion into one of the standard solutions to vibration equations.
Our equation looks very similar to
1 ω n 2 d 2 x d t 2 +x=C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaamiEaiabg2da 9iaadoeaaaa@@
By comparing this with our equation we see that the natural frequency of vibration is
ω n = 2k 3m (rad/s) = 1 2π 2k 3m ( Hz ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyYdC 3aaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaa ikdacaWGRbaabaGaaG4maiaad2gaaaaaleqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caGGOaGaaeOCaiaabggacaqG KbGaae4laiaabohacaqGPaaabaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqG9aWaaSaaaeaacaqGXaaabaGaaeOmaiabec8aWbaadaGc aaqaamaalaaabaGaaGOmaiaadUgaaeaacaaIZaGaamyBaaaaaSqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVpaabmaabaGaaeisaiaabQhaaiaawIcacaGLPaaaaaaa@8F4A@
Summary of procedure for calculating natural frequencies:
(1) Describe the motion of the system, using a single scalar variable (In the example, we chose to describe motion using the distance s);
(2) Write down the potential energy V and kinetic energy T of the system in terms of the scalar variable;
(3) Use d dt ( T+V )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG0baaamaabmaabaGaamivaiabgUcaRiaadAfa aiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3EF3@ to get an equation of motion for your scalar variable;
(4) Arrange the equation of motion in standard form;
(5) Read off the natural frequency by comparing your equation to the standard form.
Example 2: A nonlinear system.
We will illustrate the procedure with a second example, which will demonstrate another useful trick.
Find the natural frequency of vibration for a pendulum, shown in the figure.
We will idealize the mass as a particle, to keep things simple.
We will follow the steps outlined earlier:
(1) We describe the motion using the angle θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37EF@
(2) We write down T and V:
V=−mgLcosθ T= 1 2 m ( L dθ dt ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOvai abg2da9iabgkHiTiaad2gacaWGNbGaamitaiGacogacaGGVbGaai4C aiabeI7aXbqaaiaadsfacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYa aaaiaad2gadaqadaqaaiaadYeadaWcaaqaaiaadsgacqaH4oqCaeaa caWGKbGaamiDaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaa aaaaa@4C72@
(if you don’t see the formula for the kinetic energy, you can write down the position vector of the mass as r=Lsinθi−Lcosθj MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhacqGH9a qpcaWGmbGaci4CaiaacMgacaGGUbGaeqiUdeNaaCyAaiabgkHiTiaa dYeaciGGJbGaai4BaiaacohacqaH4oqCcaWHQbaaaa@45C6@ , differentiate to find the velocity: v=Lcosθ dθ dt i+Lsinθ dθ dt j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhacqGH9a qpcaWGmbGaci4yaiaac+gacaGGZbGaeqiUde3aaSaaaeaacaWGKbGa eqiUdehabaGaamizaiaadshaaaGaaCyAaiabgUcaRiaadYeaciGGZb GaaiyAaiaac6gacqaH4oqCdaWcaaqaaiaadsgacqaH4oqCaeaacaWG KbGaamiDaaaacaWHQbaaaa@4EE1@ , and then compute T=m(v⋅v)/2=m L 2 ( dθ dt ) 2 ( sin 2 θ+ cos 2 θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpcaWGTbGaaiikaiaahAhacqGHflY1caWH2bGaaiykaiaac+cacaaI YaGaeyypa0JaamyBaiaadYeadaahaaWcbeqaaiaaikdaaaGcdaqada qaamaalaaabaGaamizaiabeI7aXbqaaiaadsgacaWG0baaaaGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaakiaacIcaciGGZbGaaiyAai aac6gadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcqGHRaWkciGGJbGa ai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcaGGPaaaaa@581C@ and use a trig identity. You can also use the circular motion formulas, if you prefer).
(3) Differentiate with respect to time:
m L 2 d 2 θ d t 2 dθ dt +mgLsinθ dθ dt =0 ⇒ L g d 2 θ d t 2 +sinθ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBai aadYeadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaadsgadaahaaWc beqaaiaaikdaaaGccqaH4oqCaeaacaWGKbGaamiDamaaCaaaleqaba GaaGOmaaaaaaGcdaWcaaqaaiaadsgacqaH4oqCaeaacaWGKbGaamiD aaaacqGHRaWkcaWGTbGaam4zaiaadYeaciGGZbGaaiyAaiaac6gacq aH4oqCdaWcaaqaaiaadsgacqaH4oqCaeaacaWGKbGaamiDaaaacqGH 9aqpcaaIWaaabaGaeyO0H49aaSaaaeaacaWGmbaabaGaam4zaaaada WcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccqaH4oqCaeaacaWG KbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkciGGZbGaai yAaiaac6gacqaH4oqCcqGH9aqpcaaIWaaaaaa@643F@
(4) Arrange the EOM into standard form. Houston, we have a problem. There is no way this equation can be arranged into standard form. This is because the equation is nonlinear ( sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb GaaiOBaiabeI7aXbaa@3AC7@ is a nonlinear function of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37EF@ ). There is, however, a way to deal with this problem. We will show what needs to be done, summarizing the general steps as we go along.
(i) Find the static equilibrium configuration(s) for the system.
If the system is in static equilibrium, it does not move. We can find values of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37EF@ for which the system is in static equilibrium by setting all time derivatives of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37EF@ in the equation of motion to zero, and then solving the equation. Here,
sin θ o =0⇒ θ 0 =0,π,2π... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb GaaiOBaiabeI7aXnaaBaaaleaacaWGVbaabeaakiabg2da9iaaicda caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl abgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeI7aXnaaBaaaleaaca aIWaaabeaakiabg2da9iaaicdacaGGSaGaeqiWdaNaaiilaiaaikda cqaHapaCcaGGUaGaaiOlaiaac6caaaa@6AFC@
Here, we have used θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIWaaabeaaaaa@38D5@ to denote the special values of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37EF@ for which the system happens to be in static equilibrium. Note that θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIWaaabeaaaaa@38D5@ is always a constant.
(ii) Assume that the system vibrates with small amplitude about a static equilibrium configuration of interest.
To do this, we let θ= θ 0 +x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iabeI7aXnaaBaaaleaacaaIWaaabeaakiabgUcaRiaadIhaaaa@3D7A@ , where x<<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH8a apcqGH8aapcaaIXaaaaa@39F9@ .
Here, x represents a small change in angle from an equilibrium configuration.. Note that x will vary with time as the system vibrates. Instead of solving for θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37EF@ , we will solve for x. Before going on, make sure that you are comfortable with the physical significance of both x and θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIWaaabeaaaaa@38D5@ .
(iii) Linearize the equation of motion, by expanding all nonlinear terms as Taylor Maclaurin series about the equilibrium configuration.
We substitute for θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37EF@ in the equation of motion, to see that
L g d 2 x d t 2 +sin( θ 0 +x)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam itaaqaaiaadEgaaaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaa aOGaamiEaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaaki abgUcaRiGacohacaGGPbGaaiOBaiaacIcacqaH4oqCdaWgaaWcbaGa aGimaaqabaGccqGHRaWkcaWG4bGaaiykaiabg2da9iaaicdaaaa@491C@
(Recall that θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIWaaabeaaaaa@38D5@ is constant, so its time derivatives vanish)
Now, recall the Taylor-Maclaurin series expansion of a function f(x)has the form
f( x 0 +x)=f( x 0 )+x f ′ ( x 0 )+ 1 2 x 2 f ″ ( x 0 )+... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiEamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadIhacaGGPaGa eyypa0JaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaai ykaiabgUcaRiaadIhaceWGMbGbauaacaGGOaGaamiEamaaBaaaleaa caaIWaaabeaakiaacMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYa aaaiaadIhadaahaaWcbeqaaiaaikdaaaGcceWGMbGbayaacaGGOaGa amiEamaaBaaaleaacaaIWaaabeaakiaacMcacqGHRaWkcaGGUaGaai Olaiaac6caaaa@532B@
where
f ′ ( x 0 )≡ df dx | x= x 0 f ″ ( x 0 )≡ d 2 f d x 2 | x= x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAgagaqbai aacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiabggMi6oaa eiaabaWaaSaaaeaacaWGKbGaamOzaaqaaiaadsgacaWG4baaaaGaay jcSdWaaSbaaSqaaiaadIhacqGH9aqpcaWG4bWaaSbaaWqaaiaaicda aeqaaaWcbeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlqadAgagaGbaiaacIcacaWG4bWaaSbaaSqaaiaaicda aeqaaOGaaiykaiabggMi6oaaeiaabaWaaSaaaeaacaWGKbWaaWbaaS qabeaacaaIYaaaaOGaamOzaaqaaiaadsgacaWG4bWaaWbaaSqabeaa caaIYaaaaaaaaOGaayjcSdWaaSbaaSqaaiaadIhacqGH9aqpcaWG4b WaaSbaaWqaaiaaicdaaeqaaaWcbeaaaaa@7C3A@
Apply this to the nonlinear term in our equation of motion
sin( θ 0 +x )=sin θ 0 +xcos θ 0 − 1 2 x 2 sin θ 0 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb GaaiOBamaabmaabaGaeqiUde3aaSbaaSqaaiaaicdaaeqaaOGaey4k aSIaamiEaaGaayjkaiaawMcaaiabg2da9iGacohacaGGPbGaaiOBai abeI7aXnaaBaaaleaacaaIWaaabeaakiabgUcaRiaadIhaciGGJbGa ai4BaiaacohacqaH4oqCdaWgaaWcbaGaaGimaaqabaGccqGHsislda WcaaqaaiaaigdaaeaacaaIYaaaaiaadIhadaahaaWcbeqaaiaaikda aaGcciGGZbGaaiyAaiaac6gacqaH4oqCdaWgaaWcbaGaaGimaaqaba GccqGHRaWkcaGGUaGaaiOlaiaac6caaaa@59D5@
Now, since x<<1,
we can assume that
x
n
<
sin(
θ
0
+x
)≈sin
θ
0
+xcos
θ
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb
GaaiOBamaabmaabaGaeqiUde3aaSbaaSqaaiaaicdaaeqaaOGaey4k
aSIaamiEaaGaayjkaiaawMcaaiabgIKi7kGacohacaGGPbGaaiOBai
abeI7aXnaaBaaaleaacaaIWaaabeaakiabgUcaRiaadIhaciGGJbGa
ai4BaiaacohacqaH4oqCdaWgaaWcbaGaaGimaaqabaaaaa@4D9C@
Finally, we can substitute back into our equation of
motion, to obtain
L
g
d
2
x
d
t
2
+cos
θ
0
x=−sin
θ
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam
itaaqaaiaadEgaaaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaa
aOGaamiEaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaaki
abgUcaRiGacogacaGGVbGaai4CaiabeI7aXnaaBaaaleaacaaIWaaa
beaakiaadIhacqGH9aqpcqGHsislciGGZbGaaiyAaiaac6gacqaH4o
qCdaWgaaWcbaGaaGimaaqabaaaaa@4C83@
(iv) Compare
the linear equation with the standard form to deduce the natural frequency. We can do this for each equilibrium configuration.
θ
0
=0,2π,4π...⇒
L
g
d
2
x
d
t
2
+x=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
aaleaacaaIWaaabeaakiabg2da9iaaicdacaGGSaGaaGPaVlaaykW7
caaIYaGaeqiWdaNaaiilaiaaykW7caaMc8UaaGinaiabec8aWjaac6
cacaGGUaGaaiOlaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa
VlabgkDiElaaykW7caaMc8+aaSaaaeaacaWGmbaabaGaam4zaaaaca
aMc8+aaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEaaqa
aiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRiaadI
hacqGH9aqpcaaIWaaaaa@649F@
whence
ω
n
=
g
L
(rad/sec)
f
n
=
1
2π
g
L
(Hz)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyYdC
3aaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaa
dEgaaeaacaWGmbaaaaWcbeaakiaaykW7caaMc8UaaGPaVlaaykW7ca
aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG
PaVlaacIcacaqGYbGaaeyyaiaabsgacaqGVaGaae4CaiaabwgacaqG
JbGaaeykaaqaaiaadAgadaWgaaWcbaGaamOBaaqabaGccqGH9aqpda
WcaaqaaiaaigdaaeaacaaIYaGaeqiWdahaamaakaaabaWaaSaaaeaa
caWGNbaabaGaamitaaaaaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8
UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaacIcacaqGibGaaeOEaiaabMcaaaaa@852D@
Note that all
these values of
θ
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
aaleaacaaIWaaabeaaaaa@38D5@
really represent the same configuration: the
mass is hanging below the pivot. We have
rediscovered the well-known expression for the natural frequency of a freely
swinging pendulum. Next, try the remaining static equilibrium
configuration
θ
0
=π,3π,5π...⇒
L
g
d
2
x
d
t
2
−x=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
aaleaacaaIWaaabeaakiabg2da9iabec8aWjaacYcacaaMc8UaaGPa
VlaaiodacqaHapaCcaGGSaGaaGPaVlaaykW7caaI1aGaeqiWdaNaai
Olaiaac6cacaGGUaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM
c8UaeyO0H4TaaGPaVlaaykW7daWcaaqaaiaadYeaaeaacaWGNbaaai
aaykW7daWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baa
baGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0Iaam
iEaiabg2da9iaaicdaaaa@65AF@
If we look up
this equation in our list of standard solutions, we find it does not have a
harmonic solution. Instead, the solution
is
x(t)=
1
2
(
x
0
+
v
0
α
)
e
−αt
+
1
2
(
x
0
−
v
0
α
)
e
αt
α=
g
L
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEai
aacIcacaWG0bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaikda
aaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSYaaS
aaaeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeqySdegaaaGa
ayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTiabeg7aHjaads
haaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGa
amiEamaaBaaaleaacaaIWaaabeaakiabgkHiTmaalaaabaGaamODam
aaBaaaleaacaaIWaaabeaaaOqaaiabeg7aHbaaaiaawIcacaGLPaaa
caWGLbWaaWbaaSqabeaacqaHXoqycaWG0baaaaGcbaGaeqySdeMaey
ypa0ZaaOaaaeaadaWcaaqaaiaadEgaaeaacaWGmbaaaaWcbeaaaaaa
@5B60@
where
x
0
=x(t=0)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa
WcbaGaaGimaaqabaGccqGH9aqpcaWG4bGaaiikaiaadshacqGH9aqp
caaIWaGaaiykaaaa@3E3B@
and
v
0
=
dx
dt
|
t=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa
WcbaGaaGimaaqabaGccqGH9aqpdaabcaqaamaalaaabaGaamizaiaa
dIhaaeaacaWGKbGaamiDaaaaaiaawIa7amaaBaaaleaacaWG0bGaey
ypa0JaaGimaaqabaaaaa@417D@
Thus, except for some rather special initial
conditions, x increases without bound
as time increases. This is a
characteristic of an unstable mechanical
system. If we visualize
the system with
θ
0
=π
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
aaleaacaaIWaaabeaakiabg2da9iabec8aWbaa@3BA2@
,
we can see what is happening. This
equilibrium configuration has the pendulum upside down! No wonder the equation is predicting
an instability… Here
is a question to think about. Our
solution predicts that both x and dx/dtbecome infinitely large. We know
that a real pendulum would never rotate with infinite angular velocity. What has gone wrong? Example 3:
We will look at one more nonlinear system, to make sure that you are
comfortable with this procedure. Calculate the resonant frequency of small
oscillations about the equilibrium configuration
θ=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2
da9iaaicdaaaa@39AF@
for the system shown. The spring has
stiffness k and unstretched length
L
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa
WcbaGaaGimaaqabaaaaa@37F1@
. We follow the same procedure as
before. The potential and kinetic energies of the system are
V=
1
2
k
(
Lsinθ
)
2
+
1
2
mgLcosθ
T=
1
2
m
L
2
3
(
dθ
dt
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOvai
abg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaam4AamaabmaabaGa
amitaiGacohacaGGPbGaaiOBaiabeI7aXbGaayjkaiaawMcaamaaCa
aaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaaikda
aaGaamyBaiaadEgacaWGmbGaci4yaiaac+gacaGGZbGaeqiUdehaba
Gaamivaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaSaaaeaa
caWGTbGaamitamaaCaaaleqabaGaaGOmaaaaaOqaaiaaiodaaaWaae
WaaeaadaWcaaqaaiaadsgacqaH4oqCaeaacaWGKbGaamiDaaaaaiaa
wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaa@5A00@
Hence
d
dt
(T+V)=
m
L
2
3
d
2
θ
d
t
2
dθ
dt
+k
L
2
sinθcosθ
dθ
dt
−
1
2
mgLsinθ
dθ
dt
=0
⇒
m
L
2
3
d
2
θ
d
t
2
+(
k
L
2
cosθ−
mgL
2
)sinθ=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae
aacaWGKbaabaGaamizaiaadshaaaGaaiikaiaadsfacqGHRaWkcaWG
wbGaaiykaiabg2da9maalaaabaGaamyBaiaadYeadaahaaWcbeqaai
aaikdaaaaakeaacaaIZaaaamaalaaabaGaamizamaaCaaaleqabaGa
aGOmaaaakiabeI7aXbqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYa
aaaaaakmaalaaabaGaamizaiabeI7aXbqaaiaadsgacaWG0baaaiab
gUcaRiaadUgacaWGmbWaaWbaaSqabeaacaaIYaaaaOGaci4CaiaacM
gacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqiUde3aaSaaaeaa
caWGKbGaeqiUdehabaGaamizaiaadshaaaGaeyOeI0YaaSaaaeaaca
aIXaaabaGaaGOmaaaacaWGTbGaam4zaiaadYeaciGGZbGaaiyAaiaa
c6gacqaH4oqCdaWcaaqaaiaadsgacqaH4oqCaeaacaWGKbGaamiDaa
aacqGH9aqpcaaIWaaabaGaeyO0H49aaSaaaeaacaWGTbGaamitamaa
CaaaleqabaGaaGOmaaaaaOqaaiaaiodaaaWaaSaaaeaacaWGKbWaaW
baaSqabeaacaaIYaaaaOGaeqiUdehabaGaamizaiaadshadaahaaWc
beqaaiaaikdaaaaaaOGaey4kaSYaaeWaaeaacaWGRbGaamitamaaCa
aaleqabaGaaGOmaaaakiGacogacaGGVbGaai4CaiabeI7aXjabgkHi
TmaalaaabaGaamyBaiaadEgacaWGmbaabaGaaGOmaaaaaiaawIcaca
GLPaaaciGGZbGaaiyAaiaac6gacqaH4oqCcqGH9aqpcaaIWaaaaaa@8E90@
Once again, we have found a nonlinear equation of
motion. This time we know what to
do. We are told to find natural
frequency of oscillation about
θ=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2
da9iaaicdaaaa@39AF@
,
so we don’t need to solve for the equilibrium configurations this time. We set
θ=0+x
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2
da9iaaicdacqGHRaWkcaWG4baaaa@3B8E@
,
with
x<<1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH8a
apcqGH8aapcaaIXaaaaa@39F9@
and substitute back into the equation of
motion:
m
L
2
3
d
2
x
d
t
2
+(
k
L
2
cosx−
mgL
2
)sinx=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam
yBaiaadYeadaahaaWcbeqaaiaaikdaaaaakeaacaaIZaaaamaalaaa
baGaamizamaaCaaaleqabaGaaGOmaaaakiaadIhaaeaacaWGKbGaam
iDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaqadaqaaiaadUga
caWGmbWaaWbaaSqabeaacaaIYaaaaOGaci4yaiaac+gacaGGZbGaam
iEaiabgkHiTmaalaaabaGaamyBaiaadEgacaWGmbaabaGaaGOmaaaa
aiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gacaWG4bGaeyypa0JaaG
imaaaa@@
Now, expand all the nonlinear terms (it is OK to do
them one at a time and then multiply everything out. You can always throw away all powers of x greater than one as you do so)
cosx≈1sinx≈x
⇒
m
L
2
3
d
2
x
d
t
2
+(
k
L
2
−
mgL
2
)x=0
⇒
m
3k(
1−mg/2kL
)
d
2
x
d
t
2
+x=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaci4yai
aac+gacaGGZbGaamiEaiabgIKi7kaaigdacaaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlGacohacaGGPbGaaiOBaiaadIhacqGHijYU
caWG4baabaGaeyO0H49aaSaaaeaacaWGTbGaamitamaaCaaaleqaba
GaaGOmaaaaaOqaaiaaiodaaaWaaSaaaeaacaWGKbWaaWbaaSqabeaa
caaIYaaaaOGaamiEaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYa
aaaaaakiabgUcaRmaabmaabaGaam4AaiaadYeadaahaaWcbeqaaiaa
ikdaaaGccqGHsisldaWcaaqaaiaad2gacaWGNbGaamitaaqaaiaaik
daaaaacaGLOaGaayzkaaGaamiEaiabg2da9iaaicdaaeaacqGHshI3
daWcaaqaaiaad2gaaeaacaaIZaGaam4AamaabmaabaGaaGymaiabgk
HiTiaad2gacaWGNbGaai4laiaaikdacaWGRbGaamitaaGaayjkaiaa
wMcaaaaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4b
aabaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIa
amiEaiabg2da9iaaicdaaaaa@@
We now have an equation in standard form, and can read
off the natural frequency
ω
n
=
3k
m
(
1−
mg
2kL
)
(rad/sec)
f
n
=
1
2π
3k
m
(
1−
mg
2kL
)
(Hz)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyYdC
3aaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaa
iodacaWGRbaabaGaamyBaaaadaqadaqaaiaaigdacqGHsisldaWcaa
qaaiaad2gacaWGNbaabaGaaGOmaiaadUgacaWGmbaaaaGaayjkaiaa
wMcaaaWcbeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caqGOaGaaeOCaiaabggacaqGKbGaae4laiaabohaca
qGLbGaae4yaiaabMcaaeaacaWGMbWaaSbaaSqaaiaad6gaaeqaaOGa
eyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWbaadaGcaaqaam
aalaaabaGaaG4maiaadUgaaeaacaWGTbaaamaabmaabaGaaGymaiab
gkHiTmaalaaabaGaamyBaiaadEgaaeaacaaIYaGaam4AaiaadYeaaa
aacaGLOaGaayzkaaaaleqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caGGOaGaaeisaiaabQhacaqGPaaaaa
a@852F@
Question: what happens for
mg>2kL
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWGNb
GaeyOpa4JaaGOmaiaadUgacaWGmbaaaa@3B9C@
? Example 3: A system with
a rigid body (the KE of a rigid body will be defined in the next section of the
course
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa
aaaaaapeGaa83eGaaa@@
just live with it for now!). Calculate
the natural frequency of vibration for the system shown in the figure. Assume that the cylinder rolls without slip
on the wedge. The spring has stiffness k and
unstretched length
L
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa
WcbaGaaGimaaqabaaaaa@37F1@
Our first objective is to
get an equation of motion for s. We do this by writing down the potential and
kinetic energies of the system in terms of s. The potential energy is
easy:
V=
1
2
k
(
s−
L
0
)
2
−mgssinα
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacqGH9a
qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadUgadaqadaqaaiaadoha
cqGHsislcaWGmbWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaa
WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyBaiaadEgacaWGZbGa
aGPaVlaaykW7ciGGZbGaaiyAaiaac6gacqaHXoqyaaa@4C03@
The first term represents
the energy in the spring, while second term accounts for the gravitational
potential energy. The
kinetic energy is slightly more tricky. Note that the magnitude of the angular velocity of the disk is related
to the magnitude of its translational velocity by
Rω=
ds
dt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqaHjp
WDcqGH9aqpdaWcaaqaaiaadsgacaWGZbaabaGaamizaiaadshaaaaa
aa@3DB6@
Thus, the combined
rotational and translational kinetic energy follows as
T=
1
2
m
R
2
2
ω
2
+
1
2
m
(
ds
dt
)
2
=
1
2
3m
2
(
ds
dt
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivai
abg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaSaaaeaacaWGTbGa
amOuamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaGaeqyYdC3aaW
baaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOm
aaaacaWGTbWaaeWaaeaadaWcaaqaaiaadsgacaWGZbaabaGaamizai
aadshaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGcbaGa
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdaWcaaqaaiaaig
daaeaacaaIYaaaaiaaykW7caaMc8+aaSaaaeaacaaIZaGaamyBaaqa
aiaaikdaaaGaaGPaVpaabmaabaWaaSaaaeaacaWGKbGaam4Caaqaai
aadsgacaWG0baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa
aaaa@613D@
Now, note that since our
system is conservative
T+V=constant
⇒
d
dt
(
T+V
)=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivai
abgUcaRiaadAfacqGH9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiD
aiaabggacaqGUbGaaeiDaaqaaiabgkDiEpaalaaabaGaamizaaqaai
aadsgacaWG0baaamaabmaabaGaamivaiabgUcaRiaadAfaaiaawIca
caGLPaaacqGH9aqpcaaIWaaaaaa@4C75@
Differentiate our
expressions for T and V to see that
3m
2
d
2
s
d
t
2
ds
dt
+k(s−
L
0
)
ds
dt
−mg
ds
dt
sinα=0
⇒
3m
2k
d
2
s
d
t
2
+s=
L
0
+
mg
k
sinα
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae
aacaaIZaGaamyBaaqaaiaaikdaaaWaaSaaaeaacaWGKbWaaWbaaSqa
beaacaaIYaaaaOGaam4CaaqaaiaadsgacaWG0bWaaWbaaSqabeaaca
aIYaaaaaaakmaalaaabaGaamizaiaadohaaeaacaWGKbGaamiDaaaa
cqGHRaWkcaWGRbGaaiikaiaadohacqGHsislcaWGmbWaaSbaaSqaai
aaicdaaeqaaOGaaiykamaalaaabaGaamizaiaadohaaeaacaWGKbGa
amiDaaaacqGHsislcaWGTbGaam4zamaalaaabaGaamizaiaadohaae
aacaWGKbGaamiDaaaaciGGZbGaaiyAaiaac6gacqaHXoqycqGH9aqp
caaIWaaabaGaeyO0H49aaSaaaeaacaaIZaGaamyBaaqaaiaaikdaca
WGRbaaamaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadoha
aeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkca
WGZbGaeyypa0JaamitamaaBaaaleaacaaIWaaabeaakiabgUcaRmaa
laaabaGaamyBaiaadEgaaeaacaWGRbaaaiGacohacaGGPbGaaiOBai
abeg7aHbaaaa@@
The last equation is almost
in one of the standard forms given on the handout, except that the right hand
side is not zero. There is a trick to
dealing with this problem
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
simply subtract the constant right hand side
from s, and call the result x. (This only works if the right hand side is a constant, of course). Thus let
x=s−
L
0
−
mg
k
sinα
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a
qpcaWGZbGaeyOeI0IaamitamaaBaaaleaacaaIWaaabeaakiabgkHi
TmaalaaabaGaamyBaiaadEgaaeaacaWGRbaaaiGacohacaGGPbGaai
OBaiabeg7aHbaa@@
and substitute into the
equation of motion:
3m
2k
d
2
x
d
t
2
+x+
L
0
+
mg
k
sinα=
L
0
+
mg
k
sinα
⇒
3m
2k
d
2
x
d
t
2
+x=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae
aacaaIZaGaamyBaaqaaiaaikdacaWGRbaaamaalaaabaGaamizamaa
CaaaleqabaGaaGOmaaaakiaadIhaaeaacaWGKbGaamiDamaaCaaale
qabaGaaGOmaaaaaaGccqGHRaWkcaWG4bGaey4kaSIaamitamaaBaaa
leaacaaIWaaabeaakiabgUcaRmaalaaabaGaamyBaiaadEgaaeaaca
WGRbaaaiGacohacaGGPbGaaiOBaiabeg7aHjabg2da9iaadYeadaWg
aaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqaaiaad2gacaWGNbaaba
Gaam4AaaaaciGGZbGaaiyAaiaac6gacqaHXoqyaeaacqGHshI3daWc
aaqaaiaaiodacaWGTbaabaGaaGOmaiaadUgaaaWaaSaaaeaacaWGKb
WaaWbaaSqabeaacaaIYaaaaOGaamiEaaqaaiaadsgacaWG0bWaaWba
aSqabeaacaaIYaaaaaaakiabgUcaRiaadIhacqGH9aqpcaaIWaaaaa
a@@
This is now in the form
1
ω
n
2
d
2
x
d
t
2
+x=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaamiEaiabg2da
9iaaicdaaaa@@
and by comparing this with
our equation we see that the natural frequency of vibration is
ω
n
=
2k
3m
(rad/s)
=
1
2π
2k
3m
(
Hz
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyYdC
3aaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaa
ikdacaWGRbaabaGaaG4maiaad2gaaaaaleqaaOGaaGPaVlaaykW7ca
aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG
PaVlaaykW7caaMc8UaaGPaVlaaykW7caGGOaGaaeOCaiaabggacaqG
KbGaae4laiaabohacaqGPaaabaGaaeiiaiaabccacaqGGaGaaeiiai
aabccacaqG9aWaaSaaaeaacaqGXaaabaGaaeOmaiabec8aWbaadaGc
aaqaamaalaaabaGaaGOmaiaadUgaaeaacaaIZaGaamyBaaaaaSqaba
GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa
VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8
UaaGPaVpaabmaabaGaaeisaiaabQhaaiaawIcacaGLPaaaaaaa@8F4A@
We
analyzed vibration of several conservative systems in the preceding
section. In each case, we found that if
the system was set in motion, it continued to move indefinitely. This is counter to our everyday
experience. Usually, if you start
something vibrating, it will vibrate with a progressively decreasing amplitude
and eventually stop moving. The
reason our simple models predict the wrong behavior is that we neglected energy
dissipation. In this section, we explore
the influence of energy dissipation on free vibration of a spring-mass
system. As before, although we model a
very simple system, the behavior we predict turns out to be representative of a
wide range of real engineering systems. 5.3.1 Vibration of a damped spring-mass
system The
spring mass dashpot system shown is released with velocity
u
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa
WcbaGaaGimaaqabaaaaa@@
from position
s
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaWgaa
WcbaGaaGimaaqabaaaaa@@
at time
t=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a
qpcaaIWaaaaa@38F2@
. Find
s(t)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohacaGGOa
GaamiDaiaacMcaaaa@@
. Once
again, we follow the standard approach to solving problems like this (i)
Get a differential equation for s
using F=ma (ii)
Solve the differential equation. You
may have forgotten what a dashpot (or damper) does. Suppose we apply a force F to a dashpot, as shown in the figure. We would observe
that the dashpot stretched at a rate proportional to the force
F=c
dL
dt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGH9a
qpcaWGJbWaaSaaaeaacaWGKbGaamitaaqaaiaadsgacaWG0baaaaaa
@3C9E@
One
can buy dampers (the shock absorbers in your car contain dampers): a damper
generally consists of a plunger inside an oil filled cylinder, which dissipates
energy by churning the oil. Thus, it is
possible to make a spring-mass-damper system that looks very much like the one
in the picture. More generally, however,
the spring mass system is used to represent a complex mechanical system. In this case, the damper represents the
combined effects of all the various mechanisms for dissipating energy in the
system, including friction, air resistance, deformation losses, and so on. To proceed, we draw a free
body diagram, showing the forces exerted by the spring and damper on the mass. Newton’s law then states
that
k(s−
L
0
)+c
ds
dt
=ma=m
d
2
s
d
t
2
⇒
m
k
d
2
s
d
t
2
+
c
k
ds
dt
+s=
L
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4Aai
aacIcacaWGZbGaeyOeI0IaamitamaaBaaaleaacaaIWaaabeaakiaa
cMcacqGHRaWkcaWGJbWaaSaaaeaacaWGKbGaam4Caaqaaiaadsgaca
WG0baaaiabg2da9iaad2gacaWGHbGaeyypa0JaamyBamaalaaabaGa
amizamaaCaaaleqabaGaaGOmaaaakiaadohaaeaacaWGKbGaamiDam
aaCaaaleqabaGaaGOmaaaaaaaakeaacqGHshI3daWcaaqaaiaad2ga
aeaacaWGRbaaamaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaaki
aadohaaeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH
RaWkdaWcaaqaaiaadogaaeaacaWGRbaaamaalaaabaGaamizaiaado
haaeaacaWGKbGaamiDaaaacqGHRaWkcaaMc8Uaam4Caiabg2da9iaa
dYeadaWgaaWcbaGaaGimaaqabaaaaaa@@
This is our equation of motion for s. Now, we check our list of solutions to differential
equations, and see that we have a solution to:
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=C
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0Jaam4qaaaa@4E43@
We can get our equation
into this form by setting
s=x
ω
n
=
k
m
ς=
c
2
km
C=
L
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohacqGH9a
qpcaWG4bGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa
VlaaykW7caaMc8UaaGPaVlabeM8a3naaBaaaleaacaWGUbaabeaaki
abg2da9maakaaabaWaaSaaaeaacaWGRbaabaGaamyBaaaaaSqabaGc
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
eqOWdyLaeyypa0ZaaSaaaeaacaWGJbaabaGaaGOmamaakaaabaGaam
4Aaiaad2gaaSqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadoeacqGH9aqpcaWGmb
WaaSbaaSqaaiaaicdaaeqaaaaa@80BE@
As before,
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaaaaa@@
is known as the natural frequency of the
system. We have discovered a new
parameter,
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
,
which is called the damping coefficient. It plays a very important role, as we shall
see below. Now, we can write down the
solution for x: Overdamped System
ς>1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg6
da+iaaigdaaaa@39A1@
x(t)=C+exp(−ς
ω
n
t){
v
0
+(ς
ω
n
+
ω
d
)(
x
0
−C)
2
ω
d
exp(
ω
d
t)−
v
0
+(ς
ω
n
−
ω
d
)(
x
0
−C)
2
ω
d
exp(−
ω
d
t) }
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGdbGaey4kaSIaciyzaiaacIhacaGG
WbGaaiikaiabgkHiTiabek8awjabeM8a3naaBaaaleaacaWGUbaabe
aakiaadshacaGGPaWaaiWaaeaadaWcaaqaaiaadAhadaWgaaWcbaGa
aGimaaqabaGccqGHRaWkcaGGOaGaeqOWdyLaeqyYdC3aaSbaaSqaai
aad6gaaeqaaOGaey4kaSIaeqyYdC3aaSbaaSqaaiaadsgaaeqaaOGa
aiykaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam
4qaiaacMcaaeaacaaIYaGaeqyYdC3aaSbaaSqaaiaadsgaaeqaaaaa
kiGacwgacaGG4bGaaiiCaiaacIcacqaHjpWDdaWgaaWcbaGaamizaa
qabaGccaWG0bGaaiykaiabgkHiTmaalaaabaGaamODamaaBaaaleaa
caaIWaaabeaakiabgUcaRiaacIcacqaHcpGvcqaHjpWDdaWgaaWcba
GaamOBaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaamizaaqabaGc
caGGPaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislca
WGdbGaaiykaaqaaiaaikdacqaHjpWDdaWgaaWcbaGaamizaaqabaaa
aOGaciyzaiaacIhacaGGWbGaaiikaiabgkHiTiabeM8a3naaBaaale
aacaWGKbaabeaakiaadshacaGGPaaacaGL7bGaayzFaaaaaa@85B9@
where
ω
d
=
ω
n
ς
2
−1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGKbaabeaakiabg2da9iabeM8a3naaBaaaleaacaWGUbaa
beaakmaakaaabaGaeqOWdy1aaWbaaSqabeaacaaIYaaaaOGaeyOeI0
IaaGymaaWcbeaaaaa@417C@
Critically Damped System
ς=1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg2
da9iaaigdaaaa@399F@
x(t)=C+{
(
x
0
−C)+[
v
0
+
ω
n
(
x
0
−C) ]t }exp(−
ω
n
t)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGdbGaey4kaSYaaiWaaeaacaGGOaGa
amiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadoeacaGGPaGaey
4kaSYaamWaaeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIa
eqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadIhadaWgaaWcba
GaaGimaaqabaGccqGHsislcaWGdbGaaiykaaGaay5waiaaw2faaiaa
dshaaiaawUhacaGL9baaciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0
IaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaamiDaiaacMcaaaa@5AFF@
Underdamped System
ς<1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabgY
da8iaaigdaaaa@399D@
x(t)=C+exp(−ς
ω
n
t){
(
x
0
−C)cos
ω
d
t+
v
0
+ς
ω
n
(
x
0
−C)
ω
d
sin
ω
d
t }
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGdbGaey4kaSIaciyzaiaacIhacaGG
WbGaaiikaiabgkHiTiabek8awjabeM8a3naaBaaaleaacaWGUbaabe
aakiaadshacaGGPaWaaiWaaeaacaGGOaGaamiEamaaBaaaleaacaaI
WaaabeaakiabgkHiTiaadoeacaGGPaGaci4yaiaac+gacaGGZbGaeq
yYdC3aaSbaaSqaaiaadsgaaeqaaOGaamiDaiabgUcaRmaalaaabaGa
amODamaaBaaaleaacaaIWaaabeaakiabgUcaRiabek8awjabeM8a3n
aaBaaaleaacaWGUbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaicda
aeqaaOGaeyOeI0Iaam4qaiaacMcaaeaacqaHjpWDcaWLa8+aaSbaaS
qaaiaadsgaaeqaaaaakiGacohacaGGPbGaaiOBaiabeM8a3naaBaaa
leaacaWGKbaabeaakiaadshaaiaawUhacaGL9baaaaa@6D57@
where
ω
d
=
ω
n
1−
ς
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGKbaabeaakiabg2da9iabeM8a3naaBaaaleaacaWGUbaa
beaakmaakaaabaGaaGymaiabgkHiTiabek8awnaaCaaaleqabaGaaG
Omaaaaaeqaaaaa@@
is known as the damped natural frequency of
the system. In all the preceding
equations,
x
0
,
v
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa
WcbaGaaGimaaqabaGccaGGSaGaaGPaVlaaykW7caWG2bWaaSbaaSqa
aiaaicdaaeqaaaaa@3DCD@
are the values of x and its time derivative at time t=0. These
expressions are rather too complicated to visualize what the system is doing
for any given set of parameters.
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
if you have Java, Internet Explorer (or a
browser plugin that allows you to run IE in another browser) you can run a Java
Applet to visualize the motion. You can
find instructions for installing Java, the IE plugins, and giving permission
for the Applet to run here. The address for the free vibration simulator
(cut and paste this into the Internet Explorer address bar) is http://www.brown.edu/Departments/Engineering/Courses/En4/java/free.html You
can use the sliders to set the values of either m, k, and
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
(in this case the program will calculate the
values of
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
and
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaaaaa@@
for you, and display the results), or
alternatively, you can set the values of
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
and
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaaaaa@@
directly. You can also choose values for the initial conditions
x
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa
WcbaGaaGimaaqabaaaaa@381C@
and
v
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa
WcbaGaaGimaaqabaaaaa@381A@
. When you press `start,’ the applet will
animate the behavior of the system, and will draw a graph of the position of
the mass as a function of time. You can
also choose to display the phase plane, which shows the velocity of the mass as
a function of its position, if you wish. You can stop the animation at any time, change the parameters, and plot
a new graph on top of the first to see what has changed. If you press `reset’, all your graphs will be
cleared, and you can start again. Try the following tests to
familiarize yourself with the behavior of the system Set the dashpot
coefficient
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
to a low value, so that the damping
coefficient
ς<1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabgY
da8iaaigdaaaa@399D@
. Make sure the graph is set to display
position versus time, and press `start.’ You should see the system
vibrate. The vibration looks very similar to the
behavior of the conservative system we analyzed in the preceding section,
except that the amplitude decays with time. Note that the system vibrates at a frequency very slightly lower than
the natural frequency of the system. Keeping the value
of
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
fixed, vary the values of spring constant and
mass to see what happens to the frequency of vibration and also to the rate of
decay of vibration. Is the behavior
consistent with the solutions given above? Keep the values of k and m fixed, and vary
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
. You should see that, as you increase
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
,
the vibration dies away more and more quickly. What happens to the frequency of oscillations as
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
is increased? Is this behavior consistent with the predictions of the theory? Now, set the damping coefficient (not the
dashpot coefficient this time) to
ς=1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg2
da9iaaigdaaaa@399F@
. For this value, the system no longer
vibrates; instead, the mass smoothly returns to its equilibrium position x=0. If you need to design a system that returns to its equilibrium position
in the shortest possible time, then it is customary to select system parameters so that
ς=1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg2
da9iaaigdaaaa@399F@
. A system of this kind is said to be critically damped. Set
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
to a value greater than 1. Under these conditions, the system decays
more slowly towards its equilibrium configuration. Keeping
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
>1, experiment with the effects of changing
the stiffness of the spring and the value of the mass. Can you explain what is happening
mathematically, using the equations of motion and their solution? Finally, you might like to look at the
behavior of the system on its phase plane. In this course, we will not make much use of the phase plane, but it is
a powerful tool for visualizing the behavior of nonlinear systems. By looking at the patterns traced by the
system on the phase plane, you can often work out what it is doing. For example, if the trajectory encircles the
origin, then the system is vibrating. If
the trajectory approaches the origin, the system is decaying to its equilibrium
configuration. We
now know the effects of energy dissipation on a vibrating system. One important conclusion is that if the
energy dissipation is low, the system will vibrate. Furthermore, the frequency of vibration is
very close to that of an undamped system. Consequently, if you want to predict
the frequency of vibration of a system, you can simplify the calculation by
neglecting damping. We
will describe one very important application of the results developed in the
preceding section. It
often happens that we need to measure the dynamical properties of an
engineering system. For example, we
might want to measure the natural frequency and damping coefficient for a
structure after it has been built, to make sure that design predictions were
correct, and to use in future models of the system. You
can use the free vibration response to do this, as follows. First, you
instrument your design by attaching accelerometers to appropriate points. You then use an impulse hammer to excite a
particular mode of vibration, as discussed in Section 5.1.3. You use your accelerometer readings to
determine the displacement at the point where the structure was excited: the
results will be a graph similar to the one shown below. We then identify a nice
looking peak, and call the time there
t
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa
WcbaGaaGimaaqabaaaaa@@
,
as shown. The following quantities
are then measured from the graph: 1. The period of oscillation. The period of oscillation was defined
in Section 5.1.2: it is the time between two peaks, as shown. Since the signal is (supposedly) periodic, it
is often best to estimate T as follows
T=
t
n
−
t
0
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a
qpdaWcaaqaaiaadshadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWG
0bWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOBaaaaaaa@3E13@
where
t
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa
WcbaGaamOBaaqabaaaaa@@
is the time at which the nth peak occurs, as shown in the picture. 2. The Logarithmic Decrement. This is a new quantity, defined as follows
δ=log(
x(
t
n
)
x(
t
n+1
)
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2
da9iGacYgacaGGVbGaai4zamaabmaabaWaaSaaaeaacaWG4bGaaiik
aiaadshadaWgaaWcbaGaamOBaaqabaGccaGGPaaabaGaamiEaiaacI
cacaWG0bWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacMca
aaaacaGLOaGaayzkaaaaaa@47DA@
where
x(
t
n
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDamaaBaaaleaacaWGUbaabeaakiaacMcaaaa@3AB1@
is the displacement at the nth peak, as shown. In principle, you should be able to pick any
two neighboring peaks, and calculate
δ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKbaa@37DE@
. You should get the same answer, whichever
peaks you choose. It is often more
accurate to estimate
δ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKbaa@37DE@
using the following formula
δ=
1
n
log(
x(
t
0
)
x(
t
n
)
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2
da9maalaaabaGaaGymaaqaaiaad6gaaaGaciiBaiaac+gacaGGNbWa
aeWaaeaadaWcaaqaaiaadIhacaGGOaGaamiDamaaBaaaleaacaaIWa
aabeaakiaacMcaaeaacaWG4bGaaiikaiaadshadaWgaaWcbaGaamOB
aaqabaGccaGGPaaaaaGaayjkaiaawMcaaaaa@47C2@
This expression should give
the same answer as the earlier definition. Now, it turns out that we
can deduce
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaaaaa@@
and
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
from T
and
δ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKbaa@37DE@
,
as follows.
ς=
δ
4
π
2
+
δ
2
ω
n
=
4
π
2
+
δ
2
T
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg2
da9maalaaabaGaeqiTdqgabaWaaOaaaeaacaaI0aGaeqiWda3aaWba
aSqabeaacaaIYaaaaOGaey4kaSIaeqiTdq2aaWbaaSqabeaacaaIYa
aaaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeM8a3n
aaBaaaleaacaWGUbaabeaakiabg2da9maalaaabaWaaOaaaeaacaaI
0aGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiTdq2aaW
baaSqabeaacaaIYaaaaaqabaaakeaacaWGubaaaaaa@617D@
Why
does this work? Let us calculate T
and
δ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKbaa@37DE@
using the exact solution to the equation of
motion for a damped spring-mass system. Recall that, for an underdamped system, the solution has the form
x(t)=exp(−ς
ω
n
t){
x
0
cos
ω
d
t+
v
0
+ς
ω
n
x
n
ω
d
sin
ω
d
t }
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpciGGLbGaaiiEaiaacchacaGGOaGaeyOe
I0IaeqOWdyLaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaamiDaiaacM
cadaGadaqaaiaadIhadaWgaaWcbaGaaGimaaqabaGcciGGJbGaai4B
aiaacohacqaHjpWDdaWgaaWcbaGaamizaaqabaGccaWG0bGaey4kaS
YaaSaaaeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeqOW
dyLaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaaca
WGUbaabeaaaOqaaiabeM8a3naaBaaaleaacaWGKbaabeaaaaGcciGG
ZbGaaiyAaiaac6gacqaHjpWDdaWgaaWcbaGaamizaaqabaGccaWG0b
aacaGL7bGaayzFaaaaaa@@
where
ω
d
=
ω
n
1−
ς
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGKbaabeaakiabg2da9iabeM8a3naaBaaaleaacaWGUbaa
beaakmaakaaabaGaaGymaiabgkHiTiabek8awnaaCaaaleqabaGaaG
Omaaaaaeqaaaaa@@
.
Hence, the period of oscillation is
T=
2π
ω
d
=
2π
ω
n
1−
ς
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a
qpdaWcaaqaaiaaikdacqaHapaCaeaacqaHjpWDdaWgaaWcbaGaamiz
aaqabaaaaOGaeyypa0ZaaSaaaeaacaaIYaGaeqiWdahabaGaeqyYdC
3aaSbaaSqaaiaad6gaaeqaaOWaaOaaaeaacaaIXaGaeyOeI0IaeqOW
dy1aaWbaaSqabeaacaaIYaaaaaqabaaaaaaa@@
Similarly,
δ=log
exp(−ς
ω
n
t
n
){
x
0
cos
ω
d
t
n
+
v
0
+ς
ω
n
x
n
v
0
sin
ω
d
t
n
}
exp(−ς
ω
n
(
t
n
+T)){
x
0
cos
ω
d
(
t
n
+T)+
v
0
+ς
ω
n
x
n
v
0
sin
ω
d
(
t
n
+T) }
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2
da9iGacYgacaGGVbGaai4zamaalaaabaGaciyzaiaacIhacaGGWbGa
aiikaiabgkHiTiabek8awjabeM8a3naaBaaaleaacaWGUbaabeaaki
aadshadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaiWaaeaacaWG4bWa
aSbaaSqaaiaaicdaaeqaaOGaci4yaiaac+gacaGGZbGaeqyYdC3aaS
baaSqaaiaadsgaaeqaaOGaamiDamaaBaaaleaacaWGUbaabeaakiab
gUcaRmaalaaabaGaamODamaaBaaaleaacaaIWaaabeaakiabgUcaRi
abek8awjabeM8a3naaBaaaleaacaWGUbaabeaakiaadIhadaWgaaWc
baGaamOBaaqabaaakeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaaaaki
GacohacaGGPbGaaiOBaiabeM8a3naaBaaaleaacaWGKbaabeaakiaa
dshadaWgaaWcbaGaamOBaaqabaaakiaawUhacaGL9baaaeaaciGGLb
GaaiiEaiaacchacaGGOaGaeyOeI0IaeqOWdyLaeqyYdC3aaSbaaSqa
aiaad6gaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamOBaaqabaGccq
GHRaWkcaWGubGaaiykaiaacMcadaGadaqaaiaadIhadaWgaaWcbaGa
aGimaaqabaGcciGGJbGaai4BaiaacohacqaHjpWDdaWgaaWcbaGaam
izaaqabaGccaGGOaGaamiDamaaBaaaleaacaWGUbaabeaakiabgUca
RiaadsfacaGGPaGaey4kaSYaaSaaaeaacaWG2bWaaSbaaSqaaiaaic
daaeqaaOGaey4kaSIaeqOWdyLaeqyYdC3aaSbaaSqaaiaad6gaaeqa
aOGaamiEamaaBaaaleaacaWGUbaabeaaaOqaaiaadAhadaWgaaWcba
GaaGimaaqabaaaaOGaci4CaiaacMgacaGGUbGaeqyYdC3aaSbaaSqa
aiaadsgaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamOBaaqabaGccq
GHRaWkcaWGubGaaiykaaGaay5Eaiaaw2haaaaaaaa@9D5C@
where we have noted that
t
n+1
=
t
n
+T
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa
WcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0JaamiDamaaBaaa
leaacaWGUbaabeaakiabgUcaRiaadsfaaaa@3EDB@
. Fortunately, this horrendous equation can be simplified
greatly: substitute for T in terms of
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaaaaa@@
and
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
,
then cancel everything you possibly can to see that
δ=
2πς
1−
ς
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2
da9maalaaabaGaaGOmaiabec8aWjabek8awbqaamaakaaabaGaaGym
aiabgkHiTiabek8awnaaCaaaleqabaGaaGOmaaaaaeqaaaaaaaa@@
Finally, we can solve for
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaaaaa@@
and
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
to see that:
ς=
δ
4
π
2
+
δ
2
ω
n
=
4
π
2
+
δ
2
T
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg2
da9maalaaabaGaeqiTdqgabaWaaOaaaeaacaaI0aGaeqiWda3aaWba
aSqabeaacaaIYaaaaOGaey4kaSIaeqiTdq2aaWbaaSqabeaacaaIYa
aaaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeM8a3n
aaBaaaleaacaWGUbaabeaakiabg2da9maalaaabaWaaOaaaeaacaaI
0aGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiTdq2aaW
baaSqabeaacaaIYaaaaaqabaaakeaacaWGubaaaaaa@617D@
as promised. Note that this procedure can
never give us values for k, m or
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
. However, if we wanted to find these, we could
perform a static test on the structure.
If we measure the deflection d
under a static load F, then we know
that
k=
F
d
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacqGH9a
qpdaWcaaqaaiaadAeaaeaacaWGKbaaaaaa@39F3@
Once k had been
found, m and
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
are easily deduced from the relations
ω
n
=
k
m
ς=
c
2
km
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaamyBaaaaaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlabek8awjabg2da9maalaaabaGaam
4yaaqaaiaaikdadaGcaaqaaiaadUgacaWGTbaaleqaaaaaaaa@5CE3@
Finally, we solve the most important vibration
problems of all. In engineering
practice, we are almost invariably interested in predicting the response of a
structure or mechanical system to external forcing. For example, we may need to predict the
response of a bridge or tall building to wind loading, earthquakes, or ground
vibrations due to traffic. Another
typical problem you are likely to encounter is to isolate a sensitive system
from vibrations. For example, the
suspension of your car is designed to isolate a sensitive system (you) from
bumps in the road. Electron microscopes
are another example of sensitive instruments that must be isolated from
vibrations. Electron microscopes are designed
to resolve features a few nanometers in size. If the specimen vibrates with amplitude of only a few nanometers, it
will be impossible to see! Great care is
taken to isolate this kind of instrument from vibrations. That is one reason they are almost always in
the basement of a building: the basement vibrates much less than the floors
above. We
will again use a spring-mass system as a model of a real engineering
system. As before, the spring-mass
system can be thought of as representing a single mode of vibration in a real
system, whose natural frequency and damping coefficient coincide with that of
our spring-mass system. We will consider three
types of forcing applied to the spring-mass system, as shown below: External Forcing models the behavior of a system which has a time
varying force acting on it. An example
might be an offshore structure subjected to wave loading. Base Excitation models the behavior of a vibration isolation
system. The base of the spring is given
a prescribed motion, causing the mass to vibrate. This system can be used to model a vehicle
suspension system, or the earthquake response of a structure. Rotor Excitation models the effect of a rotating machine mounted on a
flexible floor. The crank with length
Y
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbWaaSbaaS
qaaiaaicdaaeqaaaaa@373A@
and mass
m
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa
WcbaGaaGimaaqabaaaaa@@
rotates at constant angular velocity, causing
the mass m to vibrate. Of
course, vibrating systems can be excited in other ways as well, but the
equations of motion will always reduce to one of the three cases we consider
here. Notice
that in each case, we will restrict our analysis to harmonic excitation. For
example, the external force applied to the first system is given by
F(t)=
F
0
sinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGgbWaaSbaaSqaaiaaicdaaeqaaOGa
ci4CaiaacMgacaGGUbGaeqyYdCNaaGPaVlaadshaaaa@@
The
force varies harmonically, with amplitude
F
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa
WcbaGaaGimaaqabaaaaa@37EA@
and frequency
ω
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@@
.
Similarly, the base motion for the second system is
y(t)=
Y
0
sinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGzbWaaSbaaSqaaiaaicdaaeqaaOGa
ci4CaiaacMgacaGGUbGaeqyYdCNaaGPaVlaadshaaaa@@
and
the distance between the small mass
m
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa
WcbaGaaGimaaqabaaaaa@@
and the large mass m for the third system has the same form. We assume that at time t=0, the initial position and velocity
of each system is
x=
x
0
dx
dt
=
v
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a
qpcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca
aMc8+aaSaaaeaacaWGKbGaamiEaaqaaiaadsgacaWG0baaaiabg2da
9iaadAhadaWgaaWcbaGaaGimaaqabaaaaa@536C@
In
each case, we wish to calculate the displacement of the mass x from its static equilibrium
configuration, as a function of time t.
It is of particular interest to determine the influence of forcing amplitude and
frequency on the motion of the mass. We follow the same approach
to analyze each system: we set up, and solve the equation of motion. Equation of Motion for External Forcing We have no problem setting
up and solving equations of motion by now. First draw a free body diagram for the system, as show on the right Newton’s
law of motion gives
m
d
2
s
d
t
2
=F(t)−k(s−
L
0
)−c
ds
dt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWcaa
qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGZbaabaGaamizaiaa
dshadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaamOraiaacIcaca
WG0bGaaiykaiabgkHiTiaadUgacaGGOaGaam4CaiabgkHiTiaadYea
daWgaaWcbaGaaGimaaqabaGccaGGPaGaeyOeI0Iaam4yamaalaaaba
GaamizaiaadohaaeaacaWGKbGaamiDaaaaaaa@4D8B@
Rearrange and susbstitute
for F(t)
m
k
d
2
s
d
t
2
+
c
k
ds
dt
+s=
L
0
+
1
k
F
0
sinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam
yBaaqaaiaadUgaaaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaa
aOGaam4CaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaaki
abgUcaRmaalaaabaGaam4yaaqaaiaadUgaaaWaaSaaaeaacaWGKbGa
am4CaaqaaiaadsgacaWG0baaaiabgUcaRiaadohacqGH9aqpcaWGmb
WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGa
am4AaaaacaWGgbWaaSbaaSqaaiaaicdaaeqaaOGaci4CaiaacMgaca
GGUbGaeqyYdCNaaGPaVlaadshaaaa@54A3@
Check out our list of
solutions to standard ODEs. We find that
if we set
ω
n
=
k
m
,ς=
c
2
km
,K=
1
k
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaamyBaaaaaSqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOWdyLaeyypa0ZaaSaa
aeaacaWGJbaabaGaaGOmamaakaaabaGaam4Aaiaad2gaaSqabaaaaO
GaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaadUeacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGRb
aaaaaa@@
, our equation can be reduced
to the form
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=C+K
F
0
sinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0Jaam4qaiabgUcaRiaadUeacaWGgbWaaSbaaSqaaiaaicdaae
qaaOGaci4CaiaacMgacaGGUbGaeqyYdCNaaGPaVlaadshaaaa@58D9@
which is on the list. The (horrible) solution to
this equation is given in the list of solutions. We will discuss the solution later, after we
have analyzed the other two systems. Equation of
Motion for Base Excitation Exactly
the same approach works for this system. The free body diagram is shown in the figure. Note that the
force in the spring is now k(x-y) because
the length of the spring is
L
0
+x−y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa
WcbaGaaGimaaqabaGccqGHRaWkcaWG4bGaeyOeI0IaamyEaaaa@3BC5@
. Similarly, the rate of change of length
of the dashpot is d(x-y)/dt. Newton’s
second law then tells us that
m
d
2
s
d
t
2
=−k(s−y−
L
0
)−c(
ds
dt
−
dy
dt
)
⇒
m
k
d
2
s
d
t
2
+
c
k
ds
dt
+s=
L
0
+y+
c
k
dy
dt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam
aalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadohaaeaacaWG
KbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcqGHsislca
WGRbGaaiikaiaadohacqGHsislcaWG5bGaeyOeI0IaamitamaaBaaa
leaacaaIWaaabeaakiaacMcacqGHsislcaWGJbWaaeWaaeaadaWcaa
qaaiaadsgacaWGZbaabaGaamizaiaadshaaaGaeyOeI0YaaSaaaeaa
caWGKbGaamyEaaqaaiaadsgacaWG0baaaaGaayjkaiaawMcaaaqaai
abgkDiEpaalaaabaGaamyBaaqaaiaadUgaaaWaaSaaaeaacaWGKbWa
aWbaaSqabeaacaaIYaaaaOGaam4CaaqaaiaadsgacaWG0bWaaWbaaS
qabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaam4yaaqaaiaadUga
aaWaaSaaaeaacaWGKbGaam4CaaqaaiaadsgacaWG0baaaiabgUcaRi
aadohacqGH9aqpcaWGmbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIa
amyEaiabgUcaRmaalaaabaGaam4yaaqaaiaadUgaaaWaaSaaaeaaca
WGKbGaamyEaaqaaiaadsgacaWG0baaaaaaaa@@
Make the
following substitutions
ω
n
=
k
m
,ς=
c
2
km
,K=1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaamyBaaaaaSqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOWdyLaeyypa0ZaaSaa
aeaacaWGJbaabaGaaGOmamaakaaabaGaam4Aaiaad2gaaSqabaaaaO
GaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaadUeacqGH9aqpcaaIXaaaaa@@
and the equation reduces to
the standard form
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=C+K(
y+
2ς
ω
n
dy
dt
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0Jaam4qaiabgUcaRiaadUeadaqadaqaaiaadMhacqGHRaWkda
WcaaqaaiaaikdacqaHcpGvaeaacqaHjpWDdaWgaaWcbaGaamOBaaqa
baaaaOWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgacaWG0baaaaGaay
jkaiaawMcaaaaa@5C9E@
Given the initial
conditions
x=
x
0
dx
dt
=
v
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a
qpcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaamizaiaadIhaaeaaca
WGKbGaamiDaaaacqGH9aqpcaWG2bWaaSbaaSqaaiaaicdaaeqaaaaa
@4BB5@
and the base motion
y(t)=
Y
0
sinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGzbWaaSbaaSqaaiaaicdaaeqaaOGa
ci4CaiaacMgacaGGUbGaeqyYdCNaaGPaVlaadshaaaa@@
we can look up the solution
in our handy list of solutions to ODEs. Equation of motion for Rotor Excitation Finally, we will derive the
equation of motion for the third case. Free body diagrams are shown in the figure for
both the rotor and the mass Note that the horizontal
acceleration of the mass
m
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa
WcbaGaaGimaaqabaaaaa@@
is
a=
d
2
d
t
2
(s+y)=
d
2
s
d
t
2
+
d
2
y
d
t
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9a
qpdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaaakeaacaWGKbGa
amiDamaaCaaaleqabaGaaGOmaaaaaaGccaGGOaGaam4CaiabgUcaRi
aadMhacaGGPaGaeyypa0ZaaSaaaeaacaWGKbWaaWbaaSqabeaacaaI
YaaaaOGaam4CaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaa
aakiabgUcaRmaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaa
dMhaaeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaaaaa@4E6D@
Hence, applying Newton’s second law in the horizontal
direction for both masses:
m
d
2
s
d
t
2
=H−k(s−
L
0
)−c
ds
dt
m
0
(
d
2
s
d
t
2
+
d
2
y
d
t
2
)=−H
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam
aalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadohaaeaacaWG
KbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaWGibGaey
OeI0Iaam4AaiaacIcacaWGZbGaeyOeI0IaamitamaaBaaaleaacaaI
WaaabeaakiaacMcacqGHsislcaWGJbWaaSaaaeaacaWGKbGaam4Caa
qaaiaadsgacaWG0baaaaqaaiaad2gadaWgaaWcbaGaaGimaaqabaGc
daqadaqaamaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaado
haaeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWk
daWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG5baabaGaam
izaiaadshadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGa
eyypa0JaeyOeI0Iaamisaaaaaa@5DC7@
Add these two equations to
eliminate H and rearrange
m+
m
0
k
d
2
s
d
t
2
+
c
k
ds
dt
+s=
L
0
−
m
0
k
d
2
y
d
t
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam
yBaiabgUcaRiaad2gadaWgaaWcbaGaaGimaaqabaaakeaacaWGRbaa
amaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadohaaeaaca
WGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqa
aiaadogaaeaacaWGRbaaamaalaaabaGaamizaiaadohaaeaacaWGKb
GaamiDaaaacqGHRaWkcaWGZbGaeyypa0JaamitamaaBaaaleaacaaI
WaaabeaakiabgkHiTmaalaaabaGaamyBamaaBaaaleaacaaIWaaabe
aaaOqaaiaadUgaaaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaa
aOGaamyEaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaaaa
a@556A@
To arrange this into
standard form, make the following substitutions
ω
n
=
k
(m+
m
0
)
ς=
c
2
k(m+
m
0
)
K=
m
0
m+
m
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaaiikaiaad2gacqGHRaWkcaWGTbWaaSbaaSqaaiaaicdaaeqaaO
GaaiykaaaaaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlabek8awjabg2da9maalaaabaGaam4yaaqaai
aaikdadaGcaaqaaiaadUgacaGGOaGaamyBaiabgUcaRiaad2gadaWg
aaWcbaGaaGimaaqabaGccaGGPaaaleqaaaaakiaaykW7caaMc8UaaG
PaVlaaykW7caaMc8UaaGPaVlaadUeacqGH9aqpdaWcaaqaaiaad2ga
daWgaaWcbaGaaGimaaqabaaakeaacaWGTbGaey4kaSIaamyBamaaBa
aaleaacaaIWaaabeaaaaaaaa@67FA@
whereupon the equation of
motion reduces to
1
ω
n
2
d
2
s
d
t
2
+
2ς
ω
n
ds
dt
+s=
L
0
−
K
ω
n
2
d
2
y
d
t
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGZbaabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadohaaeaacaWGKbGaamiDaaaacqGHRaWkcaWGZbGa
eyypa0JaamitamaaBaaaleaacaaIWaaabeaakiabgkHiTmaalaaaba
Gaam4saaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGc
daWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG5baabaGaam
izaiaadshadaahaaWcbeqaaiaaikdaaaaaaaaa@5A62@
Finally, look at the
picture to convince yourself that if the crank rotates with angular velocity
ω
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@@
,
then
y(t)=
Y
0
sinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGzbWaaSbaaSqaaiaaicdaaeqaaOGa
ci4CaiaacMgacaGGUbGaeqyYdCNaaGPaVlaadshaaaa@@
where
Y
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfadaWgaa
WcbaGaaGimaaqabaaaaa@37FD@
is the length of the crank. The solution can once again
be found in the list of solutions to ODEs. If
you have Java, Internet Explorer (or a browser plugin that allows you to run IE
in another browser) you can run a Java Applet to visualize the motion. You can find instructions for installing
Java, the IE plugins, and giving permission for the Applet to run here. The address for the free vibration simulator
(cut and paste this into the Internet Explorer address bar) is http://www.brown.edu/Departments/Engineering/Courses/En4/java/forced.html We
will use the applet to demonstrate a number of important features of forced
vibrations, including the following: The steady state response of a forced,
damped, spring mass system is independent of the initial conditions. To
convince yourself of this, run the applet (click on `start’ and let the system
run for a while). Now, press `stop’;
change the initial position of the mass, and press `start’ again. You
will see that, after a while, the solution with the new initial conditions is
exactly the same as it was before. Change the type of forcing, and repeat this test. You can change the initial velocity too, if
you wish. We
call the behavior of the system as time gets very large the `steady state’ response; and as you
see, it is independent of the initial position and velocity of the mass. The
behavior of the system while it is approaching the steady state is called the `transient’ response.The transient response depends on
everything… Now,
reduce the damping coefficient and repeat the test. You will find that the system takes longer to
reach steady state. Thus, the length of
time to reach steady state depends on the properties of the system (and also
the initial conditions). The
observation that the system always settles to a steady state has two important
consequences. Firstly, we rarely know
the initial conditions for a real engineering system (who knows what the
position and velocity of a bridge is at time t=0?) . Now we know this
doesn’t matter
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
the response is not sensitive to the initial
conditions. Secondly, if we aren’t
interested in the transient response, it turns out we can greatly simplify the
horrible solutions to our equations of motion. When analyzing forced vibrations, we
(almost) always neglect the transient response of the system, and calculate
only the steady state behavior. If you look at the
solutions to the equations of motion we calculated in the preceding sections,
you will see that each solution has the form
x(t)=
x
h
(t)+
x
p
(t)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWG4bWaaSbaaSqaaiaadIgaaeqaaOGa
aiikaiaadshacaGGPaGaey4kaSIaamiEamaaBaaaleaacaWGWbaabe
aakiaacIcacaWG0bGaaiykaaaa@445C@
The
term
x
h
(t)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa
WcbaGaamiAaaqabaGccaGGOaGaamiDaiaacMcaaaa@3AAB@
accounts for the transient response, and is
always zero for large time. The second
term gives the steady state response of the system. Following
standard convention, we will list only the steady state solutions below. You should bear in mind, however, that the
steady state is only part of the solution, and is only valid if the time is
large enough that the transient term can be neglected. This section summarizes all the formulas you will need
to solve problems involving forced vibrations. Solution for External Forcing The company is the world’s best vibration damping supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need. Equation of Motion
1
ω
n
2
d
2
s
d
t
2
+
2ς
ω
n
ds
dt
+s=C+KF(t)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGZbaabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadohaaeaacaWGKbGaamiDaaaacqGHRaWkcaWGZbGa
eyypa0Jaam4qaiabgUcaRiaadUeacaWGgbGaaiikaiaadshacaGGPa
aaaa@@
with
ω
n
=
k
m
,ς=
c
2
km
,K=
1
k
C=
L
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaamyBaaaaaSqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOWdyLaeyypa0ZaaSaa
aeaacaWGJbaabaGaaGOmamaakaaabaGaam4Aaiaad2gaaSqabaaaaO
GaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaadUeacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGRb
aaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM
c8UaaGPaVlaadoeacqGH9aqpcaWGmbWaaSbaaSqaaiaaicdaaeqaaa
aa@74D1@
Steady State Solution:
s(t)=C+
X
0
sin(
ωt+ϕ
)
X
0
=K
F
0
M(ω/
ω
n
,ζ)
M(ω/
ω
n
,ζ)=
1
{
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω/
ω
n
)
2
}
1/2
ϕ=
tan
−1
−2ςω/
ω
n
1−
ω
2
/
ω
n
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaam4Cai
aacIcacaWG0bGaaiykaiabg2da9iaadoeacqGHRaWkcaWGybWaaSba
aSqaaiaaicdaaeqaaOGaci4CaiaacMgacaGGUbWaaeWaaeaacqaHjp
WDcaaMc8UaamiDaiabgUcaRiabew9aMbGaayjkaiaawMcaaiaaykW7
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca
aMc8UaamiwamaaBaaaleaacaaIWaaabeaakiabg2da9iaadUeacaWG
gbWaaSbaaSqaaiaaicdaaeqaaOGaamytaiaacIcacqaHjpWDcaGGVa
GaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaaiilaiabeA7a6jaacMca
aeaacaWGnbGaaiikaiabeM8a3jaac+cacqaHjpWDdaWgaaWcbaGaam
OBaaqabaGccaGGSaGaeqOTdONaaiykaiabg2da9maalaaabaGaaGym
aaqaamaacmaabaWaaeWaaeaacaaIXaGaeyOeI0IaeqyYdC3aaWbaaS
qabeaacaaIYaaaaOGaai4laiabeM8a3naaDaaaleaacaWGUbaabaGa
aGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgU
caRmaabmaabaGaaGOmaiabek8awjabeM8a3jaac+cacqaHjpWDdaWg
aaWcbaGaamOBaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik
daaaaakiaawUhacaGL9baadaahaaWcbeqaaiaaigdacaGGVaGaaGOm
aaaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8
UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHvpGzcqGH9a
qpciGG0bGaaiyyaiaac6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGc
daWcaaqaaiabgkHiTiaaikdacqaHcpGvcqaHjpWDcaGGVaGaeqyYdC
3aaSbaaSqaaiaad6gaaeqaaaGcbaGaaGymaiabgkHiTiabeM8a3naa
CaaaleqabaGaaGOmaaaakiaac+cacqaHjpWDdaqhaaWcbaGaamOBaa
qaaiaaikdaaaaaaaaaaa@E15B@
Here, the function M is called the ‘magnification’ for the
system.M and
ϕ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@@
are graphed below, as a function of
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3BA5@
(a) (b) Steady state
vibration of a force spring-mass system (a) Magnification (b) phase. Solution for Base Excitation Equation of Motion
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=K(
y+
2ς
ω
n
dy
dt
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0Jaam4samaabmaabaGaamyEaiabgUcaRmaalaaabaGaaGOmai
abek8awbqaaiabeM8a3naaBaaaleaacaWGUbaabeaaaaGcdaWcaaqa
aiaadsgacaWG5baabaGaamizaiaadshaaaaacaGLOaGaayzkaaaaaa@5AF4@
with
ω
n
=
k
m
,ς=
λ
2
km
,K=1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaamyBaaaaaSqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOWdyLaeyypa0ZaaSaa
aeaacqaH7oaBaeaacaaIYaWaaOaaaeaacaWGRbGaamyBaaWcbeaaaa
GccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa
VlaaykW7caaMc8Uaam4saiabg2da9iaaigdaaaa@@
Steady State solution
x(t)=
X
0
sin(
ωt+ϕ
)
X
0
=K
Y
0
M(ω/
ω
n
,ζ)
M=
{
1+
(
2ςω/
ω
n
)
2
}
1/2
{
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω/
ω
n
)
2
}
1/2
ϕ=
tan
−1
−2ς
ω
3
/
ω
n
3
1−(1−4
ς
2
)
ω
2
/
ω
n
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaamiEai
aacIcacaWG0bGaaiykaiabg2da9iaadIfadaWgaaWcbaGaaGimaaqa
baGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3jaaykW7caWG0b
Gaey4kaSIaeqy1dygacaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGybWaaSbaaSqaaiaaic
daaeqaaOGaeyypa0Jaam4saiaadMfadaWgaaWcbaGaaGimaaqabaGc
caWGnbGaaiikaiabeM8a3jaac+cacqaHjpWDdaWgaaWcbaGaamOBaa
qabaGccaGGSaGaeqOTdONaaiykaaqaaiaad2eacqGH9aqpdaWcaaqa
amaacmaabaGaaGymaiabgUcaRmaabmaabaGaaGOmaiabek8awjabeM
8a3jaac+cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGL
PaaadaahaaWcbeqaaiaaikdaaaaakiaawUhacaGL9baadaahaaWcbe
qaaiaaigdacaGGVaGaaGOmaaaaaOqaamaacmaabaWaaeWaaeaacaaI
XaGaeyOeI0IaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaai4laiabeM
8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaOGaayjkaiaawMcaamaa
CaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaaGOmaiabek8awj
abeM8a3jaac+cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaakiaawIca
caGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUhacaGL9baadaahaa
WcbeqaaiaaigdacaGGVaGaaGOmaaaaaaGccaaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeqy1dy
Maeyypa0JaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaI
XaaaaOWaaSaaaeaacqGHsislcaaIYaGaeqOWdyLaeqyYdC3aaWbaaS
qabeaacaaIZaaaaOGaai4laiabeM8a3naaDaaaleaacaWGUbaabaGa
aG4maaaaaOqaaiaaigdacqGHsislcaGGOaGaaGymaiabgkHiTiaais
dacqaHcpGvdaahaaWcbeqaaiaaikdaaaGccaGGPaGaeqyYdC3aaWba
aSqabeaacaaIYaaaaOGaai4laiabeM8a3naaDaaaleaacaWGUbaaba
GaaGOmaaaaaaaaaaa@C19E@
The expressions for
M
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eaaaa@370B@
and
ϕ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@@
are graphed below, as a function of
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3BA5@
(a) (b) Steady state
vibration of a base excited spring
—
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugGbabaaa
aaaaaapeGaa8hfGaaa@@
mass system (a)
Amplitude and (b) phase Equation of Motion
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=−
K
ω
n
2
d
2
y
d
t
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0JaeyOeI0YaaSaaaeaacaWGlbaabaGaeqyYdC3aa0baaSqaai
aad6gaaeaacaaIYaaaaaaakmaalaaabaGaamizamaaCaaaleqabaGa
aGOmaaaakiaadMhaaeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaa
aaaaaaaa@58B0@
with
ω
n
=
k
(m+
m
0
)
ς=
λ
2
k(m+
m
0
)
K=
m
0
m+
m
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaaiikaiaad2gacqGHRaWkcaWGTbWaaSbaaSqaaiaaicdaaeqaaO
GaaiykaaaaaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlabek8awjabg2da9maalaaabaGaeq4UdWgaba
GaaGOmamaakaaabaGaam4AaiaacIcacaWGTbGaey4kaSIaamyBamaa
BaaaleaacaaIWaaabeaakiaacMcaaSqabaaaaOGaaGPaVlaaykW7ca
aMc8UaaGPaVlaaykW7caaMc8Uaam4saiabg2da9maalaaabaGaamyB
amaaBaaaleaacaaIWaaabeaaaOqaaiaad2gacqGHRaWkcaWGTbWaaS
baaSqaaiaaicdaaeqaaaaaaaa@68C6@
Steady state solution
x(t)=
X
0
sin(
ωt+ϕ
)
X
0
=K
Y
0
M(ω/
ω
n
,ζ)
M=
ω
2
/
ω
n
2
{
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω/
ω
n
)
2
}
1/2
ϕ=
tan
−1
−2ςω/
ω
n
1−
ω
2
/
ω
n
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaamiEai
aacIcacaWG0bGaaiykaiabg2da9iaadIfadaWgaaWcbaGaaGimaaqa
baGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3jaaykW7caWG0b
Gaey4kaSIaeqy1dygacaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca
aMc8UaamiwamaaBaaaleaacaaIWaaabeaakiabg2da9iaadUeacaWG
zbWaaSbaaSqaaiaaicdaaeqaaOGaamytaiaacIcacqaHjpWDcaGGVa
GaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaaiilaiabeA7a6jaacMca
aeaacaWGnbGaeyypa0ZaaSaaaeaacqaHjpWDdaahaaWcbeqaaiaaik
daaaGccaGGVaGaeqyYdC3aa0baaSqaaiaad6gaaeaacaaIYaaaaaGc
baWaaiWaaeaadaqadaqaaiaaigdacqGHsislcqaHjpWDdaahaaWcbe
qaaiaaikdaaaGccaGGVaGaeqyYdC3aa0baaSqaaiaad6gaaeaacaaI
YaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaS
YaaeWaaeaacaaIYaGaeqOWdyLaeqyYdCNaai4laiabeM8a3naaBaaa
leaacaWGUbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa
aaaOGaay5Eaiaaw2haamaaCaaaleqabaGaaGymaiaac+cacaaIYaaa
aaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca
aMc8UaaGPaVlaaykW7cqaHvpGzcqGH9aqpciGG0bGaaiyyaiaac6ga
daahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWcaaqaaiabgkHiTiaaik
dacqaHcpGvcqaHjpWDcaGGVaGaeqyYdC3aa0baaSqaaiaad6gaaeaa
aaaakeaacaaIXaGaeyOeI0IaeqyYdC3aaWbaaSqabeaacaaIYaaaaO
Gaai4laiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaaaaaa@B666@
The expressions for
X
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaaaaa@37FC@
and
ϕ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@@
are graphed below, as a function of
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3BA5@
Steady state
vibration of a rotor excited spring
—
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugGbabaaa
aaaaaapeGaa8hfGaaa@@
mass system (a)
Amplitude (b) Phase Now, we will discuss the
implications of the results in the preceding section. The
steady state response is always harmonic, and has the same frequency as that of
the forcing. To see this mathematically, note that
in each case the solution has the form
x(t)=
X
0
sin(ωt+ϕ)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGybWaaSbaaSqaaiaaicdaaeqaaOGa
ci4CaiaacMgacaGGUbGaaiikaiabeM8a3jaaykW7caWG0bGaey4kaS
Iaeqy1dyMaaiykaaaa@@
. Recall that
ω
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@@
defines the frequency of the force, the
frequency of base excitation, or the rotor angular velocity. Thus, the frequency of vibration is
determined by the forcing, not by the properties of the spring-mass
system. This is unlike the free
vibration response. You can also check this out using our
applet. To switch off the transient
solution, click on the checkbox labeled `show transient’. Then, try running the applet with different values
for k, m and
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
,
as well as different forcing frequencies, to see what happens. As long as you have switched off the
transient solution, the response will always be harmonic. The amplitude of vibration is
strongly dependent on the frequency of excitation, and on the properties of the
spring
—
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa8hfGaaa@@
mass system. To see this mathematically, note that
the solution has the form
x(t)=
X
0
sin(ωt+ϕ)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGybWaaSbaaSqaaiaaicdaaeqaaOGa
ci4CaiaacMgacaGGUbGaaiikaiabeM8a3jaaykW7caWG0bGaey4kaS
Iaeqy1dyMaaiykaaaa@@
. Observe that
X
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaaaaa@37FC@
is the amplitude of vibration, and look at the
preceding section to find out how the amplitude of vibration varies with
frequency, the natural frequency of the system, the damping factor, and the
amplitude of the forcing. The formulae
for
X
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaaaaa@37FC@
are quite complicated, but you will learn a
great deal if you are able to sketch graphs of
X
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaaaaa@37FC@
as a function of
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3BA5@
for various values of
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
. You can also use our applet to study
the influence of forcing frequency, the natural frequency of the system, and the damping coefficient. If you plot position-v-time curves, make sure
you switch off the transient solution to show clearly the steady state
behavior. Note also that if you click on
the `amplitude
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
v- frequency’
radio button just below the graphs, you will see a graph showing the steady
state amplitude of vibration as a function of forcing frequency. The current frequency of excitation is marked
as a square dot on the curve (if you don’t see the square dot, it means the
frequency of excitation is too high to fit on the scale
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
if you lower the excitation frequency and
press `start’ again you should see the dot appear). You can change the properties of the spring
mass system (or the natural frequency and damping coefficient) and draw new
amplitude-v-frequency curves to see how the response of the system has
changed. Try the following tests (i) Keeping the natural frequency
fixed (or k and m fixed), plot ampltude-v-frequency graphs for various values of damping
coefficient (or the dashpot coefficient). What happens to the maximum amplitude of vibration as damping is
reduced? (ii) Keep the damping coefficient
fixed at around 0.1. Plot graphs of
amplitude-v-frequency for various values of the natural frequency of the
system. How does the maximum vibration
amplitude change as natural frequency is varied? What about the frequency at which the maximum
occurs? (iii) Keep the dashpot coefficient
fixed at a lowish value. Plot graphs of
amplitude-v-frequency for various values of spring stiffness and mass. Can you reconcile the behavior you observe
with the results of test (ii)? (iv) Try changing the type of forcing
to base excitation and rotor excitation. Can you see any differences in the amplitude-v-frequency curves for
different types of forcing? (v) Set the damping coefficient to a
low value (below 0.1). Keep the natural
frequency fixed. Run the program for
different excitation frequencies. Watch
what the system is doing. Observe the
behavior when the excitation frequency coincides with the natural frequency of
the system. Try this test for each type
of excitation. If the forcing
frequency is close to the natural frequency of the system, and the system is
lightly damped, huge vibration amplitudes may occur. This phenomenon is known as resonance. If
you ran the tests in the preceding section, you will have seen the system
resonate. Note that the system resonates
at a very similar frequency for each type of forcing. As a general rule, engineers try to
avoid resonance like the plague. Resonance is bad vibrations. Large amplitude vibrations imply large forces; and large forces cause
material failure. There are exceptions
to this rule, of course. Musical
instruments, for example, are supposed to resonate, so as to amplify sound. Musicians who play string, wind and brass
instruments spend years training their lips or bowing arm to excite just the
right vibration modes in their instruments to make them sound perfect. Resonance is a good thing in energy
harvesting systems, and many instruments, such as MEMS gyroscopes, and atomic
force microscopes, work by measuring how an external stimulus of some sort
(rotation, or a surface force) changes the resonant frequency of a system. There is a phase lag between the
forcing and the system response, which depends on the frequency of excitation
and the properties of the spring-mass system. The response of the system is
x(t)=
X
0
sin(ωt+ϕ)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGybWaaSbaaSqaaiaaicdaaeqaaOGa
ci4CaiaacMgacaGGUbGaaiikaiabeM8a3jaaykW7caWG0bGaey4kaS
Iaeqy1dyMaaiykaaaa@@
. Expressions for
ϕ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@@
are given in the preceding section. Note that the phase lag is always
negative. You can use the applet to examine the
physical significance of the phase lag. Note that you can have the program plot a graph of phase-v-frequency for
you, if you wish. It is rather unusual to be particularly interested in the
phase of the vibration, so we will not discuss it in detail here. 5.4.5 Engineering implications of vibration behavior The solutions listed in the
preceding sections give us general guidelines for engineering a system to avoid
(or create!) vibrations. Preventing a
system from vibrating: Suppose that
we need to stop a structure or component from vibrating
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
e.g. to stop a tall building from
swaying. Structures are always
deformable to some extent
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
this is represented qualitatively by the
spring in a spring-mass system. They
always have mass
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
this is represented by the mass of the
block. Finally, the damper represents
energy dissipation. Forces acting on a
system generally fluctuate with time. They probably aren’t perfectly harmonic, but they usually do have a
fairly well defined frequency (visualize waves on the ocean, for example, or
wind gusts. Many vibrations are
man-made, in which case their frequency is known
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
for example vehicles traveling on a road tend
to induce vibrations with a frequency of about 2Hz, corresponding to the bounce
of the car on its suspension). So
how do we stop the system from vibrating? We know that its motion is given by
x(t)=
X
0
sin(
ωt+ϕ
)
X
0
=
K
F
0
{
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω/
ω
n
)
2
}
1/2
ϕ=
tan
−1
−2ςω/
ω
n
1−
ω
2
/
ω
n
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaamiEai
aacIcacaWG0bGaaiykaiabg2da9iaadIfadaWgaaWcbaGaaGimaaqa
baGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3jaaykW7caWG0b
Gaey4kaSIaeqy1dygacaGLOaGaayzkaaaabaGaamiwamaaBaaaleaa
caaIWaaabeaakiabg2da9maalaaabaGaam4saiaadAeadaWgaaWcba
GaaGimaaqabaaakeaadaGadaqaamaabmaabaGaaGymaiabgkHiTiab
eM8a3naaCaaaleqabaGaaGOmaaaakiaac+cacqaHjpWDdaqhaaWcba
GaamOBaaqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa
ikdaaaGccqGHRaWkdaqadaqaaiaaikdacqaHcpGvcqaHjpWDcaGGVa
GaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaWaaWba
aSqabeaacaaIYaaaaaGccaGL7bGaayzFaaWaaWbaaSqabeaacaaIXa
Gaai4laiaaikdaaaaaaOGaaGPaVlaaykW7aeaacaaMc8Uaeqy1dyMa
eyypa0JaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaIXa
aaaOWaaSaaaeaacqGHsislcaaIYaGaeqOWdyLaeqyYdCNaai4laiab
eM8a3naaBaaaleaacaWGUbaabeaaaOqaaiaaigdacqGHsislcqaHjp
WDdaahaaWcbeqaaiaaikdaaaGccaGGVaGaeqyYdC3aa0baaSqaaiaa
d6gaaeaacaaIYaaaaaaaaaaa@85F6@
ω
n
=
k
m
,ς=
c
2
km
,K=
1
k
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaamyBaaaaaSqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOWdyLaeyypa0ZaaSaa
aeaacaWGJbaabaGaaGOmamaakaaabaGaam4Aaiaad2gaaSqabaaaaO
GaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaadUeacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGRb
aaaaaa@@
Our vibration solution
predicts that the mass vibrates with displacement
x(t)=
X
0
sin(
ωt+ϕ
)
X
0
=
K
Y
0
{
1+
(
2ςω/
ω
n
)
2
}
1/2
{
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω/
ω
n
)
2
}
1/2
ϕ=
tan
−1
−2ς
ω
3
/
ω
n
3
1−(1−4
ς
2
)
ω
2
/
ω
n
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaamiEai
aacIcacaWG0bGaaiykaiabg2da9iaadIfadaWgaaWcbaGaaGimaaqa
baGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3jaaykW7caWG0b
Gaey4kaSIaeqy1dygacaGLOaGaayzkaaaabaGaamiwamaaBaaaleaa
caaIWaaabeaakiabg2da9maalaaabaGaam4saiaadMfadaWgaaWcba
GaaGimaaqabaGcdaGadaqaaiaaigdacqGHRaWkdaqadaqaaiaaikda
cqaHcpGvcqaHjpWDcaGGVaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaa
GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzF
aaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaaakeaadaGadaqaam
aabmaabaGaaGymaiabgkHiTiabeM8a3naaCaaaleqabaGaaGOmaaaa
kiaac+cacqaHjpWDdaqhaaWcbaGaamOBaaqaaiaaikdaaaaakiaawI
cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaa
ikdacqaHcpGvcqaHjpWDcaGGVaGaeqyYdC3aaSbaaSqaaiaad6gaae
qaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGL7bGa
ayzFaaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaaaaOGaaGPaVd
qaaiaaykW7cqaHvpGzcqGH9aqpciGG0bGaaiyyaiaac6gadaahaaWc
beqaaiabgkHiTiaaigdaaaGcdaWcaaqaaiabgkHiTiaaikdacqaHcp
GvcqaHjpWDdaahaaWcbeqaaiaaiodaaaGccaGGVaGaeqyYdC3aa0ba
aSqaaiaad6gaaeaacaaIZaaaaaGcbaGaaGymaiabgkHiTiaacIcaca
aIXaGaeyOeI0IaaGinaiabek8awnaaCaaaleqabaGaaGOmaaaakiaa
cMcacqaHjpWDdaahaaWcbeqaaiaaikdaaaGccaGGVaGaeqyYdC3aa0
baaSqaaiaad6gaaeaacaaIYaaaaaaaaaaa@9D09@
Again,
the graph is helpful to understand how the vibration amplitude
X
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaaaaa@37FD@
varies with system parameters. Clearly,
we can minimize the vibration amplitude of the mass by making
ω/
ω
n
>>1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGH+aGpcqGH+aGpcaaI
Xaaaaa@3E7B@
.We can do this by making the spring
stiffness as small as possible (use a soft spring), and making the mass
large. It also helps to make the damping
ζ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6baa@37F7@
small. This is counter-intuitive
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
people often think that the energy dissipated
by the shock absorbers in their suspensions that makes them work. There
are some disadvantages to making the damping too small, however. For one thing, if the system is lightly
damped, and is disturbed somehow, the subsequent transient vibrations will take
a very long time to die out. In
addition, there is always a risk that the frequency of base excitation is lower
than we expect
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
if the system is lightly damped, a potentially
damaging resonance may occur. Suspension
design involves a bit more than simply minimizing the vibration of the mass, of
course
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
the car will handle poorly if the wheels begin
to leave the ground. A very soft
suspension generally has poor handling, so the engineers must trade off
handling against vibration isolation. We
often measure the natural frequency and damping coefficient for a mode of
vibration in a structure or component, by measuring the forced vibration
response of the system. Here
is how this is done. We find some way to
apply a harmonic excitation to the system (base excitation might work; or you
can apply a force using some kind of actuator, or you could deliberately mount
an unbalanced rotor on the system). Then,
we mount accelerometers on our system, and use them to measure the displacement
of the structure, at the point where it is being excited, as a function of
frequency. We
then plot a graph, which usually looks something like the picture on the right.
We read off the maximum response
X
max
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaciyBaiaacggacaGG4baabeaaaaa@3A16@
,
and draw a horizontal line at amplitude
X
max
/
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaciyBaiaacggacaGG4baabeaakiaac+cadaGcaaqaaiaaikda
aSqabaaaaa@3BAA@
. Finally, we measure the frequencies
ω
1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaaIXaaabeaaaaa@38ED@
,
ω
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaaIYaaabeaaaaa@38EE@
and
ω
max
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaaciGGTbGaaiyyaiaacIhaaeqaaaaa@3B06@
as shown in the picture. We define the bandwidth of the response
Δω
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabeM
8a3baa@396C@
as
Δω=
ω
2
−
ω
1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabeM
8a3jabg2da9iabeM8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiab
eM8a3naaBaaaleaacaaIXaaabeaaaaa@40D2@
Like
the logarithmic decrement, the bandwidth of the forced harmonic response is a
measure of the damping in a system. It
turns out that we can estimate the natural frequency of the system and its
damping coefficient using the following formulae
ς≈
Δω
2
ω
max
ω
n
≈
ω
max
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabgI
Ki7oaalaaabaGaeuiLdqKaeqyYdChabaGaaGOmaiabeM8a3naaBaaa
leaaciGGTbGaaiyyaiaacIhaaeqaaaaakiaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeM8a3n
aaBaaaleaacaWGUbaabeaakiabgIKi7kabeM8a3naaBaaaleaaciGG
TbGaaiyyaiaacIhaaeqaaaaa@679F@
The formulae are accurate
for small
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
- say
ς<0.2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabgY
da8iaaicdacaGGUaGaaGOmaaaa@3B0A@
. To
understand the origin of these formulae, recall that the amplitude of vibration
due to external forcing is given by
X
0
=
K
F
0
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω/
ω
n
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadUeacaWGgbWaaSba
aSqaaiaaicdaaeqaaaGcbaWaaOaaaeaadaqadaqaaiaaigdacqGHsi
slcqaHjpWDdaahaaWcbeqaaiaaikdaaaGccaGGVaGaeqyYdC3aa0ba
aSqaaiaad6gaaeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabe
aacaaIYaaaaOGaey4kaSYaaeWaaeaacaaIYaGaeqOWdyLaeqyYdCNa
ai4laiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaam
aaCaaaleqabaGaaGOmaaaaaeqaaaaaaaa@522C@
We
can find the frequency at which the amplitude is a maximum by differentiating
with respect to
ω
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@@
,
setting the derivative equal to zero and solving the resulting equation for
frequency. It turns out that the maximum
amplitude occurs at a frequency
ω
max
=
ω
n
1−2
ς
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaeyypa0JaeqyYdC3aaSba
aSqaaiaad6gaaeqaaOWaaOaaaeaacaaIXaGaeyOeI0IaaGOmaiabek
8awnaaCaaaleqabaGaaGOmaaaaaeqaaaaa@440E@
For small
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
,
we see that
ω
max
≈
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaeyisISRaeqyYdC3aaSba
aSqaaiaad6gaaeqaaaaa@3FAD@
Next,
to get an expression relating the bandwidth
Δω
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabeM
8a3baa@396C@
to
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
,
we first calculate the frequencies
ω
1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaaIXaaabeaaaaa@38ED@
and
ω
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaaIYaaabeaaaaa@38EE@
. Note that the maximum amplitude of vibration
can be calculated by setting
ω=
ω
max
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2
da9iabeM8a3naaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaa@3DD9@
,
which gives
X
max
=
K
F
0
2ς
1−
ς
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaciyBaiaacggacaGG4baabeaakiabg2da9maalaaabaGaam4s
aiaadAeadaWgaaWcbaGaaGimaaqabaaakeaacaaIYaGaeqOWdy1aaO
aaaeaacaaIXaGaeyOeI0IaeqOWdy1aaWbaaSqabeaacaaIYaaaaaqa
baaaaaaa@@
Now, at the two frequencies
of interest, we know
X
0
=
X
max
/
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaGccqGH9aqpcaWGybWaaSbaaSqaaiGac2gacaGG
HbGaaiiEaaqabaGccaGGVaWaaOaaaeaacaaIYaaaleqaaaaa@3E7D@
,
so that
ω
1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaaIXaaabeaaaaa@38ED@
and
ω
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaaIYaaabeaaaaa@38EE@
must be solutions of the equation
K
F
0
2ς
1−
ς
2
1
2
=
K
F
0
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω
ω
n
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam
4saiaadAeadaWgaaWcbaGaaGimaaqabaaakeaacaaIYaGaeqOWdy1a
aOaaaeaacaaIXaGaeyOeI0IaeqOWdy1aaWbaaSqabeaacaaIYaaaaa
qabaaaaOWaaSaaaeaacaaIXaaabaWaaOaaaeaacaaIYaaaleqaaaaa
kiabg2da9maalaaabaGaam4saiaadAeadaWgaaWcbaGaaGimaaqaba
aakeaadaGcaaqaamaabmaabaGaaGymaiabgkHiTiabeM8a3naaCaaa
leqabaGaaGOmaaaakiaac+cacqaHjpWDdaqhaaWcbaGaamOBaaqaai
aaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGH
RaWkdaqadaqaaiaaikdacqaHcpGvcqaHjpWDcqaHjpWDdaWgaaWcba
GaamOBaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaa
beaaaaaaaa@5AA4@
Rearrange this equation to
see that
ω
4
−2
ω
2
ω
n
2
(1−2
ς
2
)+
ω
n
4
−8
ς
2
ω
n
4
(1−
ς
2
)=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaCa
aaleqabaGaaGinaaaakiabgkHiTiaaikdacqaHjpWDdaahaaWcbeqa
aiaaikdaaaGccqaHjpWDdaqhaaWcbaGaamOBaaqaaiaaikdaaaGcca
GGOaGaaGymaiabgkHiTiaaikdacqaHcpGvdaahaaWcbeqaaiaaikda
aaGccaGGPaGaey4kaSIaeqyYdC3aa0baaSqaaiaad6gaaeaacaaI0a
aaaOGaeyOeI0IaaGioaiabek8awnaaCaaaleqabaGaaGOmaaaakiab
eM8a3naaDaaaleaacaWGUbaabaGaaGinaaaakiaacIcacaaIXaGaey
OeI0IaeqOWdy1aaWbaaSqabeaacaaIYaaaaOGaaiykaiabg2da9iaa
icdaaaa@5B58@
This is a quadratic
equation for
ω
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaCa
aaleqabaGaaGOmaaaaaaa@38EF@
and has solutions
ω
1
=
{
ω
n
2
(1−2
ς
2
)−2
ω
n
2
ς
1−
ς
2
}
1/2
ω
2
=
{
ω
n
2
(1−2
ς
2
)+2
ω
n
2
ς
1−
ς
2
}
1/2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyYdC
3aa0baaSqaaiaaigdaaeaaaaGccqGH9aqpdaGadaqaaiabeM8a3naa
DaaaleaacaWGUbaabaGaaGOmaaaakiaacIcacaaIXaGaeyOeI0IaaG
Omaiabek8awnaaCaaaleqabaGaaGOmaaaakiaacMcacqGHsislcaaI
YaGaeqyYdC3aa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeqOWdy1aaO
aaaeaacaaIXaGaeyOeI0IaeqOWdy1aaWbaaSqabeaacaaIYaaaaaqa
baaakiaawUhacaGL9baadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaa
aaaOqaaiabeM8a3naaDaaaleaacaaIYaaabaaaaOGaeyypa0ZaaiWa
aeaacqaHjpWDdaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaGGOaGaaG
ymaiabgkHiTiaaikdacqaHcpGvdaahaaWcbeqaaiaaikdaaaGccaGG
PaGaey4kaSIaaGOmaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaa
aakiabek8awnaakaaabaGaaGymaiabgkHiTiabek8awnaaCaaaleqa
baGaaGOmaaaaaeqaaaGccaGL7bGaayzFaaWaaWbaaSqabeaacaaIXa
Gaai4laiaaikdaaaaaaaa@718C@
Expand both expressions in
a Taylor series about
ς=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg2
da9iaaicdaaaa@399E@
to see that
ω
1
≈
ω
n
(1−ς)
ω
2
≈
ω
n
(1+ς)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyYdC
3aaSbaaSqaaiaaigdaaeqaaOGaeyisISRaeqyYdC3aaSbaaSqaaiaa
d6gaaeqaaOGaaiikaiaaigdacqGHsislcqaHcpGvcaGGPaaabaGaeq
yYdC3aaSbaaSqaaiaaikdaaeqaaOGaeyisISRaeqyYdC3aaSbaaSqa
aiaad6gaaeqaaOGaaiikaiaaigdacqGHRaWkcqaHcpGvcaGGPaaaaa
a@4E4C@
so, finally, we confirm
that
Δω=
ω
2
−
ω
1
=2ς
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabeM
8a3jabg2da9iabeM8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiab
eM8a3naaBaaaleaacaaIXaaabeaakiabg2da9iaaikdacqaHcpGvcq
aHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@472F@
Example 1: A structure is idealized as a damped spring
—
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa8hfGaaa@@
mass system with
stiffness 10 kN/m; mass 2Mg; and dashpot coefficient 2 kNs/m. It is subjected to a harmonic force of
amplitude 500N at frequency 0.5Hz. Calculate
the steady state amplitude of vibration. Start by calculating the
properties of the system:
ω
n
=
k
m
=2.23 rad/sς=
c
2
km
=0.224K=
1
k
=
1
m/N
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaamyBaaaaaSqabaGccqGH9aqpcaaIYaGaaiOlaiaaikdacaaIZa
GaaeiiaiaabkhacaqGHbGaaeizaiaab+cacaqGZbGaaGPaVlaaykW7
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOWdy
Laeyypa0ZaaSaaaeaacaWGJbaabaGaaGOmamaakaaabaGaam4Aaiaa
d2gaaSqabaaaaOGaeyypa0JaaGimaiaac6cacaaIYaGaaGOmaiaais
dacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa
VlaadUeacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGRbaaaiabg2da9m
aalaaabaGaaGymaaqaaiaaigdacaaIWaGaaGimaiaaicdacaaIWaaa
aiaabccacaqGGaGaaeyBaiaab+cacaqGobaaaa@774B@
Now, the list of solutions
to forced vibration problems gives
x(t)=
X
0
sin(
ωt+ϕ
)
X
0
=
K
F
0
{
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω/
ω
n
)
2
}
1/2
ϕ=
tan
−1
−2ςω/
ω
n
1−
ω
2
/
ω
n
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaamiEai
aacIcacaWG0bGaaiykaiabg2da9iaadIfadaWgaaWcbaGaaGimaaqa
baGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3jaaykW7caWG0b
Gaey4kaSIaeqy1dygacaGLOaGaayzkaaaabaGaamiwamaaBaaaleaa
caaIWaaabeaakiabg2da9maalaaabaGaam4saiaadAeadaWgaaWcba
GaaGimaaqabaaakeaadaGadaqaamaabmaabaGaaGymaiabgkHiTiab
eM8a3naaCaaaleqabaGaaGOmaaaakiaac+cacqaHjpWDdaqhaaWcba
GaamOBaaqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa
ikdaaaGccqGHRaWkdaqadaqaaiaaikdacqaHcpGvcqaHjpWDcaGGVa
GaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaWaaWba
aSqabeaacaaIYaaaaaGccaGL7bGaayzFaaWaaWbaaSqabeaacaaIXa
Gaai4laiaaikdaaaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
eqy1dyMaeyypa0JaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsi
slcaaIXaaaaOWaaSaaaeaacqGHsislcaaIYaGaeqOWdyLaeqyYdCNa
ai4laiabeM8a3naaBaaaleaacaWGUbaabeaaaOqaaiaaigdacqGHsi
slcqaHjpWDdaahaaWcbeqaaiaaikdaaaGccaGGVaGaeqyYdC3aa0ba
aSqaaiaad6gaaeaacaaIYaaaaaaaaaaa@A1BB@
For the present problem:
ω=0.5×2πrad/s⇒ω/
ω
n
=π/2.23=1.41
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2
da9iaaicdacaGGUaGaaGynaiabgEna0kaaikdacqaHapaCcaaMc8Ua
aeOCaiaabggacaqGKbGaae4laiaabohacaaMc8UaaGPaVlaaykW7cq
GHshI3caaMc8UaaGPaVlabeM8a3jaab+cacqaHjpWDdaWgaaWcbaGa
aeOBaaqabaGccqGH9aqpcqaHapaCcaGGVaGaaGOmaiaac6cacaaIYa
GaaG4maiabg2da9iaaigdacaGGUaGaaGinaiaaigdaaaa@5F8A@
Substituting numbers into
the expression for the vibration amplitude shows that
X
0
=43mm
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaGccqGH9aqpcaaI0aGaaG4maiaaykW7caaMc8Ua
aeyBaiaab2gaaaa@3F7D@
Example 2: A
car and its suspension system are idealized as a damped spring
—
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa8hfGaaa@@
mass system, with
natural frequency 0.5Hz and damping coefficient 0.2. Suppose the car drives at speed V over a road with sinusoidal
roughness. Assume the roughness
wavelength is 10m, and its amplitude is 20cm. At what speed does the maximum amplitude of vibration occur, and what is
the corresponding vibration amplitude? Let s denote the distance traveled by the car, and let L denote the wavelength of the roughness
and H the roughness amplitude. Then, the height of the wheel above the mean
road height may be expressed as
y=Hsin(
2πs
L
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a
qpcaWGibGaci4CaiaacMgacaGGUbWaaeWaaeaadaWcaaqaaiaaikda
cqaHapaCcaWGZbaabaGaamitaaaaaiaawIcacaGLPaaaaaa@41BD@
Noting that
s=Vt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohacqGH9a
qpcaWGwbGaamiDaaaa@3A0B@
,
we have that
y(t)=Hsin(
2πV
L
t
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGibGaci4CaiaacMgacaGGUbWaaeWa
aeaadaWcaaqaaiaaikdacqaHapaCcaWGwbaabaGaamitaaaacaWG0b
aacaGLOaGaayzkaaaaaa@44EB@
i.e., the wheel oscillates
vertically with harmonic motion, at frequency
ω=2πV/L
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2
da9iaaikdacqaHapaCcaWGwbGaai4laiaadYeaaaa@3DE4@
. Now, the suspension has
been idealized as a spring
—
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa8hfGaaa@@
mass system
subjected to base excitation. The steady
state vibration is
x(t)=
X
0
sin(
ωt+ϕ
)
X
0
=K
Y
0
M
M=
{
1+
(
2ςω/
ω
n
)
2
}
1/2
{
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω/
ω
n
)
2
}
1/2
ϕ=
tan
−1
−2ς
ω
3
/
ω
n
3
1−(1−4
ς
2
)
ω
2
/
ω
n
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaamiEai
aacIcacaWG0bGaaiykaiabg2da9iaadIfadaWgaaWcbaGaaGimaaqa
baGcciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3jaaykW7caWG0b
Gaey4kaSIaeqy1dygacaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca
WGybWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Jaam4saiaadMfadaWg
aaWcbaGaaGimaaqabaGccaWGnbaabaGaamytaiabg2da9maalaaaba
WaaiWaaeaacaaIXaGaey4kaSYaaeWaaeaacaaIYaGaeqOWdyLaeqyY
dCNaai4laiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawM
caamaaCaaaleqabaGaaGOmaaaaaOGaay5Eaiaaw2haamaaCaaaleqa
baGaaGymaiaac+cacaaIYaaaaaGcbaWaaiWaaeaadaqadaqaaiaaig
dacqGHsislcqaHjpWDdaahaaWcbeqaaiaaikdaaaGccaGGVaGaeqyY
dC3aa0baaSqaaiaad6gaaeaacaaIYaaaaaGccaGLOaGaayzkaaWaaW
baaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacaaIYaGaeqOWdyLa
eqyYdCNaai4laiabeM8a3naaBaaaleaacaWGUbaabeaaaOGaayjkai
aawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5Eaiaaw2haamaaCaaa
leqabaGaaGymaiaac+cacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHvpGz
cqGH9aqpciGG0bGaaiyyaiaac6gadaahaaWcbeqaaiabgkHiTiaaig
daaaGcdaWcaaqaaiabgkHiTiaaikdacqaHcpGvcqaHjpWDdaahaaWc
beqaaiaaiodaaaGccaGGVaGaeqyYdC3aa0baaSqaaiaad6gaaeaaca
aIZaaaaaGcbaGaaGymaiabgkHiTiaacIcacaaIXaGaeyOeI0IaaGin
aiabek8awnaaCaaaleqabaGaaGOmaaaakiaacMcacqaHjpWDdaahaa
WcbeqaaiaaikdaaaGccaGGVaGaeqyYdC3aa0baaSqaaiaad6gaaeaa
caaIYaaaaaaaaaaa@BD03@
For light damping, the
maximum amplitude of vibration occurs at around the natural frequency. Therefore, the critical speed follows from
ω=
2πV
L
=
ω
n
⇒V=
ω
n
L/2π=5m/s=18 km/hr
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyYdC
Naeyypa0ZaaSaaaeaacaaIYaGaeqiWdaNaamOvaaqaaiaadYeaaaGa
eyypa0JaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaGcbaGaeyO0H4Taam
Ovaiabg2da9iabeM8a3naaBaaaleaacaWGUbaabeaakiaadYeacaGG
VaGaaGOmaiabec8aWjabg2da9iaaiwdacaaMc8UaaeyBaiaab+caca
qGZbGaaeypaiaabgdacaqG4aGaaeiiaiaabUgacaqGTbGaae4laiaa
bIgacaqGYbaaaaa@599F@
Note that K=1 for base excitation, so that the
amplitude of vibration at
ω/
ω
n
=1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGH9aqpcaaIXaaaaa@3D70@
is approximately
X
0
≈
Y
0
2ς
=20/0.4=50cm
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaGccqGHijYUdaWcaaqaaiaadMfadaWgaaWcbaGa
aGimaaqabaaakeaacaaIYaGaeqOWdyfaaiabg2da9iaaikdacaaIWa
Gaai4laiaaicdacaGGUaGaaGinaiabg2da9iaaiwdacaaIWaGaaGPa
VlaabogacaqGTbaaaa@492F@
Note that at this speed,
the suspension system is making the vibration worse. The amplitude of the car’s vibration is
greater than the roughness of the road. Suspensions work best if they are excited at frequencies well above
their resonant frequencies. Example 3: The suspension system discussed in the preceding
problem has the following specifications. For the roadway described in the preceding section, the amplitude of
vibration may not exceed 35cm at any speed. At 55 miles per hour, the amplitude of vibration must be less than
10cm. The car weighs lb. Select values for the spring stiffness and
the dashpot coefficient. We
must first determine values for
ζ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6baa@37F7@
and
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaaaaa@@
that will satisfy the design specifications.
To this end: (i)The specification
requires that
X
0
Y
0
<
35
20
=1.75
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam
iwamaaBaaaleaacaaIWaaabeaaaOqaaiaadMfadaWgaaWcbaGaaGim
aaqabaaaaOGaeyipaWZaaSaaaeaacaaIZaGaaGynaaqaaiaaikdaca
aIWaaaaiabg2da9iaaigdacaGGUaGaaG4naiaaiwdaaaa@41DD@
for any value of
ω
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDaaa@@
(remember
ω=2πV/L
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDcqGH9a
qpcaaIYaGaeqiWdaNaamOvaiaac+cacaWGmbaaaa@3D21@
). Recall
that
X
0
=K
Y
0
M(ω/
ω
n
,ζ)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGybWaaSbaaS
qaaiaaicdaaeqaaOGaeyypa0Jaam4saiaadMfadaWgaaWcbaGaaGim
aaqabaGccaWGnbGaaiikaiabeM8a3jaac+cacqaHjpWDdaWgaaWcba
GaamOBaaqabaGccaGGSaGaeqOTdONaaiykaaaa@44F5@
and that K=1
for a base excited spring
—
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa8hfGaaa@@
mass system. This
tells us that the magnification
M=
X
0
/
Y
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0
JaamiwamaaBaaaleaacaaIWaaabeaakiaac+cacaWGzbWaaSbaaSqa
aiaaicdaaeqaaaaa@3B92@
has to be below 1.75 for any frequency. The
graph shows that if
ς>0.4
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg6
da+iaaicdacaGGUaGaaGinaaaa@3B10@
,
the magnification never exceeds 1.75. We
also see that smaller values of
ζ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEaaa@@
make the suspension more effective (M is smaller) at high frequencies. So
ς=0.4
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg2
da9iaaicdacaGGUaGaaGinaaaa@3B0E@
is a good choice. If you prefer not to use the graph, you can use the
approximation
M
max
≈1/(2ζ)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaSbaaS
qaaiGac2gacaGGHbGaaiiEaaqabaGccqGHijYUcaaIXaGaai4laiaa
cIcacaaIYaGaeqOTdONaaiykaaaa@@
which suggests that
ζ>1/(2×1.75)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEcqGH+a
GpcaaIXaGaai4laiaacIcacaaIYaGaey41aqRaaGymaiaac6cacaaI
3aGaaGynaiaacMcaaaa@40C2@
which gives
ζ≈0.3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEcqGHij
YUcaaIWaGaaiOlaiaaiodaaaa@3B0D@
- but the approximation is not very accurate
for such large values of
ζ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEaaa@@
(to get a better estimate you’d have to
maximize the formula for magnification with respect to
ω
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDaaa@@
but that’s very messy). (ii)Now, the
frequency of base excitation at 55mph is
ω=
2πV
L
=
2π×0.447×55
10
=15.45 rad/s
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2
da9maalaaabaGaaGOmaiabec8aWjaadAfaaeaacaWGmbaaaiabg2da
9maalaaabaGaaGOmaiabec8aWjabgEna0kaaicdacaGGUaGaaGinai
aaisdacaaI3aGaey41aqRaaGynaiaaiwdaaeaacaaIXaGaaGimaaaa
cqGH9aqpcaaIXaGaaGynaiaac6cacaaI0aGaaGynaiaabccacaqGGa
GaaeOCaiaabggacaqGKbGaae4laiaabohaaaa@55F7@
We must choose system parameters so that, at this
excitation frequency,
X
0
/
Y
0
<10/20=1/2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaGccaGGVaGaamywamaaBaaaleaacaaIWaaabeaa
kiabgYda8iaaigdacaaIWaGaai4laiaaikdacaaIWaGaeyypa0JaaG
ymaiaac+cacaaIYaaaaa@@
.
This tells us that M
must be less than
½
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa8xVaaaa@37AC@
when
ω
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDaaa@@
is 15.45 rad/s or greater. We already know that
ζ=0.4
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEcqGH9a
qpcaaIWaGaaiOlaiaaisdaaaa@3A63@
,
and following the curve for this value of
ζ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEaaa@@
we see that M<1/2 if
ω/
ω
n
>2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGH+aGpcaaIYaaaaa@3D73@
.
Therefore, we must pick
ω
n
<ω/2=7.7 rad/s
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabgYda8iabeM8a3jaac+cacaaIYaGaeyyp
a0JaaG4naiaac6cacaaI3aGaaeiiaiaabccacaqGYbGaaeyyaiaabs
gacaqGVaGaae4Caaaa@@
.
Again, if you prefer not to use the graph, you can
also solve
M=
{
1+
(
2ςω/
ω
n
)
2
}
1/2
{
(
1−
ω
2
/
ω
n
2
)
2
+
(
2ςω/
ω
n
)
2
}
1/2
<
1
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a
qpdaWcaaqaamaacmaabaGaaGymaiabgUcaRmaabmaabaGaaGOmaiab
ek8awjabeM8a3jaac+cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaki
aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUhacaGL9baa
daahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaaaOqaamaacmaabaWaae
WaaeaacaaIXaGaeyOeI0IaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGa
ai4laiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaOGaayjkai
aawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaaGOm
aiabek8awjabeM8a3jaac+cacqaHjpWDdaWgaaWcbaGaamOBaaqaba
aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUhacaGL
9baadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaaaaGccqGH8aapda
WcaaqaaiaaigdaaeaacaaIYaaaaaaa@663F@
for
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDcaGGVa
GaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaa@3AE2@
, but this is a pain, and the graph is
accurate enough for a design estimate. Finally,
we can compute properties of the system. We have that
ω
n
=
k
m
⇒7.7=
k
0.44×
⇒k=78 kN/m
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaamyBaaaaaSqabaGccqGHshI3caaI3aGaaiOlaiaaiEdacqGH9a
qpdaGcaaqaamaalaaabaGaam4AaaqaaiaaicdacaGGUaGaaGinaiaa
isdacqGHxdaTcaaIZaGaaGimaiaaicdacaaIWaaaaaWcbeaakiabgk
DiElaadUgacqGH9aqpcaaI3aGaaGioaiaabccacaqGGaGaae4Aaiaa
b6eacaqGVaGaaeyBaaaa@556F@
Similarly
ς=
λ
2
mk
⇒λ=2×0.4×
×.44×
=8kNs/m
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awjabg2
da9maalaaabaGaeq4UdWgabaGaaGOmamaakaaabaGaamyBaiaadUga
aSqabaaaaOGaeyO0H4Taeq4UdWMaeyypa0JaaGOmaiabgEna0kaaic
dacaGGUaGaaGinaiabgEna0oaakaaabaGaaG4naiaaiIdacaaIWaGa
aGimaiaaicdacqGHxdaTcaGGUaGaaGinaiaaisdacqGHxdaTcaaIZa
GaaGimaiaaicdacaaIWaaaleqaaOGaeyypa0JaaGioaiaabUgacaqG
obGaae4Caiaab+cacaqGTbaaaa@5CD2@
Our
goal in this course is to understand what the solutions to differential
equations tell us about engineering problems we might need to solve. But if you have time on your hands, you
might be interested in learning how to solve the differential equations. It’s
fairly straightforward, if a little tedious algebraically. You will learn this material in future
courses (applied math, and several more advanced engineering courses) whether
you want to or not… Review of complex numbers It’s
easiest to solve linear ODEs using complex variables. The following definitions and results are
particularly useful: Define
i=
−1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaeyypa0
ZaaOaaaeaacqGHsislcaaIXaaaleqaaaaa@392D@
Any complex number z can be split into imaginary and real parts as
z=a+ib
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG6bGaeyypa0
JaamyyaiabgUcaRiaadMgacaWGIbaaaa@3B18@
where
a and b are two real numbers. Define the complex conjugate as
z
¯
=a−ib
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG6bGbaebacq
GH9aqpcaWGHbGaeyOeI0IaamyAaiaadkgaaaa@3B3B@
It follows that
a=(z+
z
¯
)/2b=−i(z−
z
¯
)/2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbGaeyypa0
JaaiikaiaadQhacqGHRaWkceWG6bGbaebacaGGPaGaai4laiaaikda
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caWGIbGaeyypa0JaeyOeI0IaamyA
aiaacIcacaWG6bGaeyOeI0IabmOEayaaraGaaiykaiaac+cacaaIYa
aaaa@@
The exponential of an imaginary number
(Euler’s formula) is
e
iθ
=cosθ+isinθ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaWbaaS
qabeaacaWGPbGaeqiUdehaaOGaeyypa0Jaci4yaiaac+gacaGGZbGa
eqiUdeNaey4kaSIaamyAaiGacohacaGGPbGaaiOBaiabeI7aXbaa@@
You
can prove this by taking the Taylor expansion of both sides of the formula Euler’s formula enables us to write any
complex number in polar form
a+ib=ρ
e
iθ
ρ=
a
2
+
b
2
θ=
tan
−1
(b/a)
a=ρcosθb=ρsinθ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadggacq
GHRaWkcaWGPbGaamOyaiabg2da9iabeg8aYjaadwgadaahaaWcbeqa
aiaadMgacqaH4oqCaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyWdiNaeyypa0ZaaOaa
aeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOyamaaCa
aaleqabaGaaGOmaaaaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeI7aXjabg2da9i
GacshacaGGHbGaaiOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaa
cIcacaWGIbGaai4laiaadggacaGGPaaabaGaamyyaiabg2da9iabeg
8aYjGacogacaGGVbGaai4CaiabeI7aXjaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGIbGaey
ypa0JaeqyWdiNaci4CaiaacMgacaGGUbGaeqiUdehaaaa@910E@
Euler’s formula also allows us to represent
trig functions as complex exponentials
cosθ=(
e
iθ
+
e
−iθ
)/2sinθ=−i(
e
iθ
−
e
−iθ
)/2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGJbGaai4Bai
aacohacqaH4oqCcqGH9aqpcaGGOaGaamyzamaaCaaaleqabaGaamyA
aiabeI7aXbaakiabgUcaRiaadwgadaahaaWcbeqaaiabgkHiTiaadM
gacqaH4oqCaaGccaGGPaGaai4laiaaikdacaaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlGacohacaGGPbGaaiOBaiabeI7aXjabg2da
9iabgkHiTiaadMgacaGGOaGaamyzamaaCaaaleqabaGaamyAaiabeI
7aXbaakiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacqaH
4oqCaaGccaGGPaGaai4laiaaikdaaaa@705A@
Note that
d
e
iωt
dt
=iω
e
iωt
d
2
e
iωt
d
t
2
=−
ω
2
e
iωt
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaads
gacaWGLbWaaWbaaSqabeaacaWGPbGaeqyYdCNaamiDaaaaaOqaaiaa
dsgacaWG0baaaiabg2da9iaadMgacqaHjpWDcaWGLbWaaWbaaSqabe
aacaWGPbGaeqyYdCNaamiDaaaakiaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7daWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGLbWa
aWbaaSqabeaacaWGPbGaeqyYdCNaamiDaaaaaOqaaiaadsgacaWG0b
WaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iabgkHiTiabeM8a3naa
CaaaleqabaGaaGOmaaaakiaadwgadaahaaWcbeqaaiaadMgacqaHjp
WDcaWG0baaaaaa@6CDF@
Solution to the equation of motion for
an undamped harmonic oscillator Solve
1
ω
n
2
d
2
x
d
t
2
+x=C
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaamiEaiabg2da
9iaadoeaaaa@@
with initial conditions
x=
x
0
dx/dt=
v
0
t=0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
JaamiEamaaBaaaleaacaaIWaaabeaakiaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caWGKbGaamiEaiaac+cacaWGKbGaam
iDaiabg2da9iaadAhadaWgaaWcbaGaaGimaaqabaGccaaMc8UaaGPa
VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8
UaaGPaVlaaykW7caaMc8UaamiDaiabg2da9iaaicdaaaa@@
Guess
a solution of the form
x=C+A
e
λt
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
Jaam4qaiabgUcaRiaadgeacaWGLbWaaWbaaSqabeaacqaH7oaBcaWG
0baaaaaa@3DAD@
where A and
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@372A@
are two complex numbers to be determined (this may seem a cheat, but actually there
are only two ways to do an integral (1) guess a solution, differentiate it, and
see if the answer is correct; and (2) rearrange the integral into another form
with a known solution. We know an
exponential is a good guess for x
because when an exponential is differentiated it stays an exponential). Substitute this into our ODE
λ
2
ω
n
2
A
e
λt
+A
e
λt
=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq
4UdW2aaWbaaSqabeaacaaIYaaaaaGcbaGaeqyYdC3aa0baaSqaaiaa
d6gaaeaacaaIYaaaaaaakiaadgeacaWGLbWaaWbaaSqabeaacqaH7o
aBcaWG0baaaOGaey4kaSIaamyqaiaadwgadaahaaWcbeqaaiabeU7a
SjaadshaaaGccqGH9aqpcaaIWaaaaa@486D@
We
can satisfy this for any A by
choosing
λ
2
/
ω
n
2
=−1⇒λ=±
−1
ω
n
=±i
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaahaa
WcbeqaaiaaikdaaaGccaGGVaGaeqyYdC3aa0baaSqaaiaad6gaaeaa
caaIYaaaaOGaeyypa0JaeyOeI0IaaGymaiabgkDiElabeU7aSjabg2
da9iabgglaXoaakaaabaGaeyOeI0IaaGymaaWcbeaakiabeM8a3naa
BaaaleaacaWGUbaabeaakiabg2da9iabgglaXkaadMgacqaHjpWDda
WgaaWcbaGaamOBaaqabaaaaa@51C7@
. This
gives us two families of solutions to the equations, one with
x=C+Aexp(i
ω
n
t)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
Jaam4qaiabgUcaRiaadgeaciGGLbGaaiiEaiaacchacaGGOaGaamyA
aiabeM8a3naaBaaaleaacaWGUbaabeaakiaadshacaGGPaaaaa@42FA@
and another with
x=Aexp(−i
ω
n
t)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
JaamyqaiGacwgacaGG4bGaaiiCaiaacIcacqGHsislcaWGPbGaeqyY
dC3aaSbaaSqaaiaad6gaaeqaaOGaamiDaiaacMcaaaa@423D@
. The most general solution is the sum of
these, with different coefficients
x=C+
A
1
e
i
ω
n
t
+
A
2
e
−i
ω
n
t
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
Jaam4qaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGLbWa
aWbaaSqabeaacaWGPbGaeqyYdC3aaSbaaWqaaiaad6gaaeqaaSGaam
iDaaaakiabgUcaRiaadgeadaWgaaWcbaGaaGOmaaqabaGccaWGLbWa
aWbaaSqabeaacqGHsislcaWGPbGaeqyYdC3aaSbaaWqaaiaad6gaae
qaaSGaamiDaaaaaaa@4A57@
We need to find
A
1
,
A
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS
qaaiaaigdaaeqaaOGaaiilaiaadgeadaWgaaWcbaGaaGOmaaqabaaa
aa@398B@
:
we can do this by substituting t=0
into x and using the given values of x at t=0
x(0)=
A
1
+
A
2
+C=
x
0
⇒
A
1
+
A
2
=
x
0
−C
dx
dt
|
t=0
=i
ω
n
(
A
1
−
A
2
)=
v
0
⇒
A
1
−
A
2
=−i
v
0
/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadIhaca
GGOaGaaGimaiaacMcacqGH9aqpcaWGbbWaaSbaaSqaaiaaigdaaeqa
aOGaey4kaSIaamyqamaaBaaaleaacaaIYaaabeaakiabgUcaRiaado
eacqGH9aqpcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyO0H4Taamyq
amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadgeadaWgaaWcbaGaaG
OmaaqabaGccqGH9aqpcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOe
I0Iaam4qaaqaamaaeiaabaWaaSaaaeaacaWGKbGaamiEaaqaaiaads
gacaWG0baaaaGaayjcSdWaaSbaaSqaaiaadshacqGH9aqpcaaIWaaa
beaakiabg2da9iaadMgacqaHjpWDdaWgaaWcbaGaamOBaaqabaGcca
GGOaGaamyqamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadgeadaWg
aaWcbaGaaGOmaaqabaGccaGGPaGaeyypa0JaamODamaaBaaaleaaca
aIWaaabeaakiabgkDiElaadgeadaWgaaWcbaGaaGymaaqabaGccqGH
sislcaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0Iaam
yAaiaadAhadaWgaaWcbaGaaGimaaqabaGccaGGVaGaeqyYdC3aaSba
aSqaaiaad6gaaeqaaaaaaa@72E7@
Add and subtract these two
equations to see that
A
1
=
1
2
(
(
x
0
−C)−i
v
0
ω
n
)
A
2
=
1
2
(
(
x
0
−C)+i
v
0
ω
n
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS
qaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaa
daqadaqaaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0
Iaam4qaiaacMcacqGHsislcaWGPbWaaSaaaeaacaWG2bWaaSbaaSqa
aiaaicdaaeqaaaGcbaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaaaO
GaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa
VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyqamaaBaaaleaaca
aIYaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWa
aeaacaGGOaGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaado
eacaGGPaGaey4kaSIaamyAamaalaaabaGaamODamaaBaaaleaacaaI
WaaabeaaaOqaaiabeM8a3naaBaaaleaacaWGUbaabeaaaaaakiaawI
cacaGLPaaaaaa@698D@
We can use Euler’s formula
to re-write this as
A
1
=−
i
2
X
0
e
iϕ
A
2
=
i
2
X
0
e
−iϕ
X
0
=
(
x
0
−C
)
2
+
v
0
2
/
ω
n
2
sinϕ=
x
0
−C
(
x
0
−C
)
2
+
v
0
2
/
ω
n
2
cosϕ=
v
0
/
ω
n
(
x
0
−C
)
2
+
v
0
2
/
ω
n
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadgeada
WgaaWcbaGaaGymaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaadMga
aeaacaaIYaaaaiaadIfadaWgaaWcbaGaaGimaaqabaGccaWGLbWaaW
baaSqabeaacaWGPbGaeqy1dygaaOGaaGPaVlaaykW7caaMc8UaaGPa
VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyqamaaBaaaleaaca
aIYaaabeaakiabg2da9maalaaabaGaamyAaaqaaiaaikdaaaGaamiw
amaaBaaaleaacaaIWaaabeaakiaadwgadaahaaWcbeqaaiabgkHiTi
aadMgacqaHvpGzaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caaMc8oabaGaamiwamaaBaaaleaaca
aIWaaabeaakiabg2da9maakaaabaWaaeWaaeaacaWG4bWaaSbaaSqa
aiaaicdaaeqaaOGaeyOeI0Iaam4qaaGaayjkaiaawMcaamaaCaaale
qabaGaaGOmaaaakiabgUcaRiaadAhadaqhaaWcbaGaaGimaaqaaiaa
ikdaaaGccaGGVaGaeqyYdC3aa0baaSqaaiaad6gaaeaacaaIYaaaaa
qabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
ci4CaiaacMgacaGGUbGaeqy1dyMaeyypa0ZaaSaaaeaacaWG4bWaaS
baaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4qaaqaamaakaaabaWaaeWa
aeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4qaaGaay
jkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadAhadaqh
aaWcbaGaaGimaaqaaiaaikdaaaGccaGGVaGaeqyYdC3aa0baaSqaai
aad6gaaeaacaaIYaaaaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPa
VlaaykW7caaMc8Uaci4yaiaac+gacaGGZbGaeqy1dyMaeyypa0ZaaS
aaaeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaai4laiabeM8a3naa
BaaaleaacaWGUbaabeaaaOqaamaakaaabaWaaeWaaeaacaWG4bWaaS
baaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4qaaGaayjkaiaawMcaamaa
CaaaleqabaGaaGOmaaaakiabgUcaRiaadAhadaqhaaWcbaGaaGimaa
qaaiaaikdaaaGccaGGVaGaeqyYdC3aa0baaSqaaiaad6gaaeaacaaI
Yaaaaaqabaaaaaaaaa@BEAE@
(to see this just
substitute
X
0
,ϕ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGybWaaSbaaS
qaaiaaicdaaeqaaOGaaiilaiabew9aMbaa@39BB@
into the formulas and use Euler’s formula to
show
A
1
,
A
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS
qaaiaaigdaaeqaaOGaaiilaiaadgeadaWgaaWcbaGaaGOmaaqabaaa
aa@398B@
are correct). Finally substitute
A
1
,
A
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS
qaaiaaigdaaeqaaOGaaiilaiaadgeadaWgaaWcbaGaaGOmaaqabaaa
aa@398B@
into the general solution for x to see that
x=C−
i
2
X
0
e
iϕ
e
i
ω
n
t
+
i
2
X
0
e
−iϕ
e
−i
ω
n
t
=C−
i
2
X
0
(
e
i(
ω
n
t+ϕ)
−
e
−i(
ω
n
t+ϕ)
)
=C+
X
0
sin(
ω
n
t+ϕ)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadIhacq
GH9aqpcaWGdbGaeyOeI0YaaSaaaeaacaWGPbaabaGaaGOmaaaacaWG
ybWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGaamyAai
abew9aMbaakiaadwgadaahaaWcbeqaaiaadMgacqaHjpWDdaWgaaad
baGaamOBaaqabaWccaWG0baaaOGaey4kaSYaaSaaaeaacaWGPbaaba
GaaGOmaaaacaWGybWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaa
leqabaGaeyOeI0IaamyAaiabew9aMbaakiaadwgadaahaaWcbeqaai
abgkHiTiaadMgacqaHjpWDdaWgaaadbaGaamOBaaqabaWccaWG0baa
aOGaeyypa0Jaam4qaiabgkHiTmaalaaabaGaamyAaaqaaiaaikdaaa
GaamiwamaaBaaaleaacaaIWaaabeaakmaabmaabaGaamyzamaaCaaa
leqabaGaamyAaiaacIcacqaHjpWDdaWgaaadbaGaamOBaaqabaWcca
WG0bGaey4kaSIaeqy1dyMaaiykaaaakiabgkHiTiaadwgadaahaaWc
beqaaiabgkHiTiaadMgacaGGOaGaeqyYdC3aaSbaaWqaaiaad6gaae
qaaSGaamiDaiabgUcaRiabew9aMjaacMcaaaaakiaawIcacaGLPaaa
aeaacqGH9aqpcaWGdbGaey4kaSIaamiwamaaBaaaleaacaaIWaaabe
aakiGacohacaGGPbGaaiOBaiaacIcacqaHjpWDdaWgaaWcbaGaamOB
aaqabaGccaWG0bGaey4kaSIaeqy1dyMaaiykaaaaaa@839F@
This agrees with the answer
on the formula sheet. Solution to the equation of motion for a
free damped system Solve
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=C
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0Jaam4qaaaa@4E43@
with initial conditions
x=
x
0
dx/dt=
v
0
t=0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
JaamiEamaaBaaaleaacaaIWaaabeaakiaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caWGKbGaamiEaiaac+cacaWGKbGaam
iDaiabg2da9iaadAhadaWgaaWcbaGaaGimaaqabaGccaaMc8UaaGPa
VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8
UaaGPaVlaaykW7caaMc8UaamiDaiabg2da9iaaicdaaaa@@
As before we guess a solution
x=C+A
e
λt
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
Jaam4qaiabgUcaRiaadgeacaWGLbWaaWbaaSqabeaacqaH7oaBcaWG
0baaaaaa@3DAD@
where A and
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@372A@
are two complex numbers to be determined. Substituting into the equation:
(
λ
2
ω
n
2
+
2ςλ
ω
n
+1
)A
e
λt
=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaS
aaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaaakeaacqaHjpWDdaqh
aaWcbaGaamOBaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIYa
GaeqOWdyLaeq4UdWgabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaa
kiabgUcaRiaaigdaaiaawIcacaGLPaaacaWGbbGaamyzamaaCaaale
qabaGaeq4UdWMaamiDaaaakiabg2da9iaaicdaaaa@4E1A@
This gives a quadratic
equation for
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@372A@
(it is called the ‘characteristic equation’
for the differential equation). It has
solutions
λ=−ζ
ω
n
∓
ω
n
ζ
2
−1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH9a
qpcqGHsislcqaH2oGEcqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqWI
tisBcqaHjpWDdaWgaaWcbaGaamOBaaqabaGcdaGcaaqaaiabeA7a6n
aaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdaaSqabaaaaa@466C@
Depending on the value of
ζ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEaaa@@
we find ·
ζ>1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEcqGH+a
GpcaaIXaaaaa@38F6@
(overdamped)
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
two real values of
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@372A@
λ=−ζ
ω
n
±
ω
d
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH9a
qpcqGHsislcqaH2oGEcqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGH
XcqScqaHjpWDdaWgaaWcbaGaamizaaqabaaaaa@42A0@
·
ζ=1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEcqGH9a
qpcaaIXaaaaa@38F4@
(critical damping):
λ=−
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH9a
qpcqGHsislcqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3C09@
·
ζ<1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH2oGEcqGH8a
apcaaIXaaaaa@38F2@
(underdamped)
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
two complex values of
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@372A@
λ=−ζ
ω
n
±i
ω
d
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH9a
qpcqGHsislcqaH2oGEcqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGH
XcqScaWGPbGaeqyYdC3aaSbaaSqaaiaadsgaaeqaaaaa@438E@
where we have defined
ω
d
=
ω
n
|
ζ
2
−1 |
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHjpWDdaWgaa
WcbaGaamizaaqabaGccqGH9aqpcqaHjpWDdaWgaaWcbaGaamOBaaqa
baGcdaGcaaqaamaaemaabaGaeqOTdO3aaWbaaSqabeaacaaIYaaaaO
GaeyOeI0IaaGymaaGaay5bSlaawIa7aaWcbeaaaaa@43F2@
To write the answers in terms of real valued
functions we need to treat these cases separately. Overdamped solution: We have that
x=C+
A
1
e
(−ζ
ω
n
+
ω
d
)t
+
A
2
e
(−ζ
ω
n
−
ω
d
)t
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
Jaam4qaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGLbWa
aWbaaSqabeaacaGGOaGaeyOeI0IaeqOTdONaeqyYdC3aaSbaaWqaai
aad6gaaeqaaSGaey4kaSIaeqyYdC3aaSbaaWqaaiaadsgaaeqaaSGa
aiykaiaadshaaaGccqGHRaWkcaWGbbWaaSbaaSqaaiaaikdaaeqaaO
GaamyzamaaCaaaleqabaGaaiikaiabgkHiTiabeA7a6jabeM8a3naa
BaaameaacaWGUbaabeaaliabgkHiTiabeM8a3naaBaaameaacaWGKb
aabeaaliaacMcacaWG0baaaaaa@573F@
We can use the initial
conditions to determine
A
1
,
A
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS
qaaiaaigdaaeqaaOGaaiilaiaadgeadaWgaaWcbaGaaGOmaaqabaaa
aa@398B@
:
x(0)=C+
A
1
+
A
2
=
x
0
dx
dt
|
t=0
=
A
1
(
ω
d
−ζ
ω
n
)−
A
1
(
ω
d
+ζ
ω
n
)=
v
0
⇒
A
1
=
v
0
+(ς
ω
n
+
ω
d
)(
x
0
−C)
2
ω
d
A
2
=−
v
0
+(ς
ω
n
−
ω
d
)(
x
0
−C)
2
ω
d
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadIhaca
GGOaGaaGimaiaacMcacqGH9aqpcaWGdbGaey4kaSIaamyqamaaBaaa
leaacaaIXaaabeaakiabgUcaRiaadgeadaWgaaWcbaGaaGOmaaqaba
GccqGH9aqpcaWG4bWaaSbaaSqaaiaaicdaaeqaaaGcbaWaaqGaaeaa
daWcaaqaaiaadsgacaWG4baabaGaamizaiaadshaaaaacaGLiWoada
WgaaWcbaGaamiDaiabg2da9iaaicdaaeqaaOGaeyypa0Jaamyqamaa
BaaaleaacaaIXaaabeaakiaacIcacqaHjpWDdaWgaaWcbaGaamizaa
qabaGccqGHsislcqaH2oGEcqaHjpWDdaWgaaWcbaGaamOBaaqabaGc
caGGPaGaeyOeI0IaamyqamaaBaaaleaacaaIXaaabeaakiaacIcacq
aHjpWDdaWgaaWcbaGaamizaaqabaGccqGHRaWkcqaH2oGEcqaHjpWD
daWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaamODamaaBaaale
aacaaIWaaabeaaaOqaaiabgkDiElaadgeadaWgaaWcbaGaaGymaaqa
baGccqGH9aqpdaWcaaqaaiaadAhadaWgaaWcbaGaaGimaaqabaGccq
GHRaWkcaGGOaGaeqOWdyLaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGa
ey4kaSIaeqyYdC3aaSbaaSqaaiaadsgaaeqaaOGaaiykaiaacIcaca
WG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam4qaiaacMcaaeaa
caaIYaGaeqyYdC3aaSbaaSqaaiaadsgaaeqaaaaakiaaykW7caaMc8
UaaGPaVlaaykW7caWGbbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Ja
eyOeI0YaaSaaaeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaS
Iaaiikaiabek8awjabeM8a3naaBaaaleaacaWGUbaabeaakiabgkHi
TiabeM8a3naaBaaaleaacaWGKbaabeaakiaacMcacaGGOaGaamiEam
aaBaaaleaacaaIWaaabeaakiabgkHiTiaadoeacaGGPaaabaGaaGOm
aiabeM8a3naaBaaaleaacaWGKbaabeaaaaaaaaa@A066@
Hence
x(t)=C+exp(−ς
ω
n
t){
v
0
+(ς
ω
n
+
ω
d
)(
x
0
−C)
2
ω
d
exp(
ω
d
t)−
v
0
+(ς
ω
n
−
ω
d
)(
x
0
−C)
2
ω
d
exp(−
ω
d
t) }
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGdbGaey4kaSIaciyzaiaacIhacaGG
WbGaaiikaiabgkHiTiabek8awjabeM8a3naaBaaaleaacaWGUbaabe
aakiaadshacaGGPaWaaiWaaeaadaWcaaqaaiaadAhadaWgaaWcbaGa
aGimaaqabaGccqGHRaWkcaGGOaGaeqOWdyLaeqyYdC3aaSbaaSqaai
aad6gaaeqaaOGaey4kaSIaeqyYdC3aaSbaaSqaaiaadsgaaeqaaOGa
aiykaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Iaam
4qaiaacMcaaeaacaaIYaGaeqyYdC3aaSbaaSqaaiaadsgaaeqaaaaa
kiGacwgacaGG4bGaaiiCaiaacIcacqaHjpWDdaWgaaWcbaGaamizaa
qabaGccaWG0bGaaiykaiabgkHiTmaalaaabaGaamODamaaBaaaleaa
caaIWaaabeaakiabgUcaRiaacIcacqaHcpGvcqaHjpWDdaWgaaWcba
GaamOBaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaamizaaqabaGc
caGGPaGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislca
WGdbGaaiykaaqaaiaaikdacqaHjpWDdaWgaaWcbaGaamizaaqabaaa
aOGaciyzaiaacIhacaGGWbGaaiikaiabgkHiTiabeM8a3naaBaaale
aacaWGKbaabeaakiaadshacaGGPaaacaGL7bGaayzFaaaaaa@85B9@
Critically damped solution: our guess for the critically damped solution gives
only
x=C+
A
1
e
−ζ
ω
n
t
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
Jaam4qaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGLbWa
aWbaaSqabeaacqGHsislcqaH2oGEcqaHjpWDdaWgaaadbaGaamOBaa
qabaWccaWG0baaaaaa@428C@
which cannot satisfy the initial conditions on
both x and dx/dt, so the solution is incomplete. We have to look around for another solution
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
it turns out that
x=C+
A
1
e
−
ω
n
t
+
A
2
t
e
−
ω
n
t
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
Jaam4qaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGLbWa
aWbaaSqabeaacqGHsislcqaHjpWDdaWgaaadbaGaamOBaaqabaWcca
WG0baaaOGaey4kaSIaamyqamaaBaaaleaacaaIYaaabeaakiaadsha
caWGLbWaaWbaaSqabeaacqGHsislcqaHjpWDdaWgaaadbaGaamOBaa
qabaWccaWG0baaaaaa@4A61@
will
also satisfy the differential equation (this is a standard trick in situations
where the characteristic equation has repeated roots). We can solve for
A
1
,
A
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS
qaaiaaigdaaeqaaOGaaiilaiaadgeadaWgaaWcbaGaaGOmaaqabaaa
aa@398B@
using the initial conditions:
x(0)=C+
A
1
=
x
0
dx
dt
|
t=0
=−
ω
n
A
1
+
A
2
=
v
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadIhaca
GGOaGaaGimaiaacMcacqGH9aqpcaWGdbGaey4kaSIaamyqamaaBaaa
leaacaaIXaaabeaakiabg2da9iaadIhadaWgaaWcbaGaaGimaaqaba
aakeaadaabcaqaamaalaaabaGaamizaiaadIhaaeaacaWGKbGaamiD
aaaaaiaawIa7amaaBaaaleaacaWG0bGaeyypa0JaaGimaaqabaGccq
GH9aqpcqGHsislcqaHjpWDdaWgaaWcbaGaamOBaaqabaGccaWGbbWa
aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyqamaaBaaaleaacaaIYa
aabeaakiabg2da9iaadAhadaWgaaWcbaGaaGimaaqabaaaaaa@@
It follows that
A
1
=
x
0
−C
A
2
=
v
0
+
ω
n
(
x
0
−C)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS
qaaiaaigdaaeqaaOGaeyypa0JaamiEamaaBaaaleaacaaIWaaabeaa
kiabgkHiTiaadoeacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadg
eadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWG2bWaaSbaaSqaaiaa
icdaaeqaaOGaey4kaSIaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaai
ikaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGdbGaaiyk
aaaa@@
so the solution is
x(t)=C+{
(
x
0
−C)+[
v
0
+
ω
n
(
x
0
−C) ]t }exp(−
ω
n
t)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGdbGaey4kaSYaaiWaaeaacaGGOaGa
amiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadoeacaGGPaGaey
4kaSYaamWaaeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIa
eqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadIhadaWgaaWcba
GaaGimaaqabaGccqGHsislcaWGdbGaaiykaaGaay5waiaaw2faaiaa
dshaaiaawUhacaGL9baaciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0
IaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaamiDaiaacMcaaaa@5AFF@
Underdamped solution: For this case
x=C+
A
1
e
(−ζ
ω
n
+i
ω
d
)t
+
A
2
e
(−ζ
ω
n
−i
ω
d
)t
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
Jaam4qaiabgUcaRiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGLbWa
aWbaaSqabeaacaGGOaGaeyOeI0IaeqOTdONaeqyYdC3aaSbaaWqaai
aad6gaaeqaaSGaey4kaSIaamyAaiabeM8a3naaBaaameaacaWGKbaa
beaaliaacMcacaWG0baaaOGaey4kaSIaamyqamaaBaaaleaacaaIYa
aabeaakiaadwgadaahaaWcbeqaaiaacIcacqGHsislcqaH2oGEcqaH
jpWDdaWgaaadbaGaamOBaaqabaWccqGHsislcaWGPbGaeqyYdC3aaS
baaWqaaiaadsgaaeqaaSGaaiykaiaadshaaaaaaa@591B@
We can use the initial
conditions to determine
A
1
,
A
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS
qaaiaaigdaaeqaaOGaaiilaiaadgeadaWgaaWcbaGaaGOmaaqabaaa
aa@398B@
(which are now complex):
x(0)=C+
A
1
+
A
2
=
x
0
dx
dt
|
t=0
=
A
1
(i
ω
d
−ζ
ω
n
)−
A
1
(i
ω
d
+ζ
ω
n
)=
v
0
⇒
A
1
=−i
v
0
+(ς
ω
n
+i
ω
d
)(
x
0
−C)
2
ω
d
A
2
=i
v
0
+(ς
ω
n
−i
ω
d
)(
x
0
−C)
2
ω
d
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadIhaca
GGOaGaaGimaiaacMcacqGH9aqpcaWGdbGaey4kaSIaamyqamaaBaaa
leaacaaIXaaabeaakiabgUcaRiaadgeadaWgaaWcbaGaaGOmaaqaba
GccqGH9aqpcaWG4bWaaSbaaSqaaiaaicdaaeqaaaGcbaWaaqGaaeaa
daWcaaqaaiaadsgacaWG4baabaGaamizaiaadshaaaaacaGLiWoada
WgaaWcbaGaamiDaiabg2da9iaaicdaaeqaaOGaeyypa0Jaamyqamaa
BaaaleaacaaIXaaabeaakiaacIcacaWGPbGaeqyYdC3aaSbaaSqaai
aadsgaaeqaaOGaeyOeI0IaeqOTdONaeqyYdC3aaSbaaSqaaiaad6ga
aeqaaOGaaiykaiabgkHiTiaadgeadaWgaaWcbaGaaGymaaqabaGcca
GGOaGaamyAaiabeM8a3naaBaaaleaacaWGKbaabeaakiabgUcaRiab
eA7a6jabeM8a3naaBaaaleaacaWGUbaabeaakiaacMcacqGH9aqpca
WG2bWaaSbaaSqaaiaaicdaaeqaaaGcbaGaeyO0H4TaamyqamaaBaaa
leaacaaIXaaabeaakiabg2da9iabgkHiTiaadMgadaWcaaqaaiaadA
hadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaGGOaGaeqOWdyLaeqyY
dC3aaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaamyAaiabeM8a3naaBa
aaleaacaWGKbaabeaakiaacMcacaGGOaGaamiEamaaBaaaleaacaaI
WaaabeaakiabgkHiTiaadoeacaGGPaaabaGaaGOmaiabeM8a3naaBa
aaleaacaWGKbaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8Uaamyq
amaaBaaaleaacaaIYaaabeaakiabg2da9iaadMgadaWcaaqaaiaadA
hadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaGGOaGaeqOWdyLaeqyY
dC3aaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyAaiabeM8a3naaBa
aaleaacaWGKbaabeaakiaacMcacaGGOaGaamiEamaaBaaaleaacaaI
WaaabeaakiabgkHiTiaadoeacaGGPaaabaGaaGOmaiabeM8a3naaBa
aaleaacaWGKbaabeaaaaaaaaa@A5FA@
We can substitute this back
into the solution and re-arrange the result
x(t)=C+exp(−ς
ω
n
t){
(
x
0
−C)
1
2
(
e
i
ω
d
t
+
e
−i
ω
d
t
)−
v
0
+ς
ω
n
(
x
0
−C)
ω
d
i
2
(
e
i
ω
d
t
−
e
−i
ω
d
t
) }
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGdbGaey4kaSIaciyzaiaacIhacaGG
WbGaaiikaiabgkHiTiabek8awjabeM8a3naaBaaaleaacaWGUbaabe
aakiaadshacaGGPaWaaiWaaeaacaGGOaGaamiEamaaBaaaleaacaaI
WaaabeaakiabgkHiTiaadoeacaGGPaWaaSaaaeaacaaIXaaabaGaaG
OmaaaadaqadaqaaiaadwgadaahaaWcbeqaaiaadMgacqaHjpWDdaWg
aaadbaGaamizaaqabaWccaWG0baaaOGaey4kaSIaamyzamaaCaaale
qabaGaeyOeI0IaamyAaiabeM8a3naaBaaameaacaWGKbaabeaaliaa
dshaaaaakiaawIcacaGLPaaacqGHsisldaWcaaqaaiaadAhadaWgaa
WcbaGaaGimaaqabaGccqGHRaWkcqaHcpGvcqaHjpWDdaWgaaWcbaGa
amOBaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIWaaabeaakiabgk
HiTiaadoeacaGGPaaabaGaeqyYdCNaaCjaVpaaBaaaleaacaWGKbaa
beaaaaGcdaWcaaqaaiaadMgaaeaacaaIYaaaamaabmaabaGaamyzam
aaCaaaleqabaGaamyAaiabeM8a3naaBaaameaacaWGKbaabeaaliaa
dshaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeq
yYdC3aaSbaaWqaaiaadsgaaeqaaSGaamiDaaaaaOGaayjkaiaawMca
aaGaay5Eaiaaw2haaaaa@81C1@
Finally we recognize the
combinations of complex exponentials as trig functions, giving
x(t)=C+exp(−ς
ω
n
t){
(
x
0
−C)cos
ω
d
t+
v
0
+ς
ω
n
(
x
0
−C)
ω
d
sin
ω
d
t }
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa
GaamiDaiaacMcacqGH9aqpcaWGdbGaey4kaSIaciyzaiaacIhacaGG
WbGaaiikaiabgkHiTiabek8awjabeM8a3naaBaaaleaacaWGUbaabe
aakiaadshacaGGPaWaaiWaaeaacaGGOaGaamiEamaaBaaaleaacaaI
WaaabeaakiabgkHiTiaadoeacaGGPaGaci4yaiaac+gacaGGZbGaeq
yYdC3aaSbaaSqaaiaadsgaaeqaaOGaamiDaiabgUcaRmaalaaabaGa
amODamaaBaaaleaacaaIWaaabeaakiabgUcaRiabek8awjabeM8a3n
aaBaaaleaacaWGUbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaicda
aeqaaOGaeyOeI0Iaam4qaiaacMcaaeaacqaHjpWDcaWLa8+aaSbaaS
qaaiaadsgaaeqaaaaakiGacohacaGGPbGaaiOBaiabeM8a3naaBaaa
leaacaWGKbaabeaakiaadshaaiaawUhacaGL9baaaaa@6D57@
Solution to the equation of motion for a
system subjected to harmonic external force Solve
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=C+K
F
0
sinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0Jaam4qaiabgUcaRiaadUeacaWGgbWaaSbaaSqaaiaaicdaae
qaaOGaci4CaiaacMgacaGGUbGaeqyYdCNaamiDaaaa@574E@
with initial
conditions
x=
x
0
dx/dt=
v
0
t=0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
JaamiEamaaBaaaleaacaaIWaaabeaakiaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caWGKbGaamiEaiaac+cacaWGKbGaam
iDaiabg2da9iaadAhadaWgaaWcbaGaaGimaaqabaGccaaMc8UaaGPa
VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8
UaaGPaVlaaykW7caaMc8UaamiDaiabg2da9iaaicdaaaa@@
It is helpful to replace the
trig function with its equivalent representation in terms of complex
exponentials We guess a solution of the
form
x(t)=
x
p
(t)+
x
h
(t)
x
p
(t)=−
i
2
(
B
1
e
iωt
−
B
2
e
−iωt
)
x
h
=C+A
e
λt
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadIhaca
GGOaGaamiDaiaacMcacqGH9aqpcaWG4bWaaSbaaSqaaiaadchaaeqa
aOGaaiikaiaadshacaGGPaGaey4kaSIaamiEamaaBaaaleaacaWGOb
aabeaakiaacIcacaWG0bGaaiykaaqaaiaadIhadaWgaaWcbaGaamiC
aaqabaGccaGGOaGaamiDaiaacMcacqGH9aqpcqGHsisldaWcaaqaai
aadMgaaeaacaaIYaaaamaabmaabaGaamOqamaaBaaaleaacaaIXaaa
beaakiaadwgadaahaaWcbeqaaiaadMgacqaHjpWDcaWG0baaaOGaey
OeI0IaamOqamaaBaaaleaacaaIYaaabeaakiaadwgadaahaaWcbeqa
aiabgkHiTiaadMgacqaHjpWDcaWG0baaaaGccaGLOaGaayzkaaGaaG
PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM
c8UaaGPaVlaadIhadaWgaaWcbaGaamiAaaqabaGccqGH9aqpcaWGdb
Gaey4kaSIaamyqaiaadwgadaahaaWcbeqaaiabeU7aSjaadshaaaaa
aaa@750D@
where
B
1
,
B
2
,A,λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGcbWaaSbaaS
qaaiaaigdaaeqaaOGaaiilaiaadkeadaWgaaWcbaGaaGOmaaqabaGc
caGGSaGaamyqaiaacYcacqaH7oaBaaa@3D71@
are complex numbers to be determined. Substituting into the ODE:
(
λ
2
ω
n
2
+
2ςλ
ω
n
+1
)A
e
λt
−
i
2
(
(
1−
ω
2
ω
n
2
+
2ςω
ω
n
i
)
B
1
e
iωt
−(
1−
ω
2
ω
n
2
−
2ςω
ω
n
i
)
B
2
e
−iωt
)=−K
F
0
i
2
(
e
iωt
−
e
−iωt
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaS
aaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaaakeaacqaHjpWDdaqh
aaWcbaGaamOBaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIYa
GaeqOWdyLaeq4UdWgabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaa
kiabgUcaRiaaigdaaiaawIcacaGLPaaacaWGbbGaamyzamaaCaaale
qabaGaeq4UdWMaamiDaaaakiabgkHiTmaalaaabaGaamyAaaqaaiaa
ikdaaaWaaeWaaeaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiabeM
8a3naaCaaaleqabaGaaGOmaaaaaOqaaiabeM8a3naaDaaaleaacaWG
UbaabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaikdacqaHcpGvcq
aHjpWDaeaacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaOGaamyAaaGa
ayjkaiaawMcaaiaadkeadaWgaaWcbaGaaGymaaqabaGccaWGLbWaaW
baaSqabeaacaWGPbGaeqyYdCNaamiDaaaakiabgkHiTmaabmaabaGa
aGymaiabgkHiTmaalaaabaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaa
GcbaGaeqyYdC3aa0baaSqaaiaad6gaaeaacaaIYaaaaaaakiabgkHi
TmaalaaabaGaaGOmaiabek8awjabeM8a3bqaaiabeM8a3naaBaaale
aacaWGUbaabeaaaaGccaWGPbaacaGLOaGaayzkaaGaamOqamaaBaaa
leaacaaIYaaabeaakiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacq
aHjpWDcaWG0baaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8Ua
eyypa0JaeyOeI0Iaam4saiaadAeadaWgaaWcbaGaaGimaaqabaGcda
WcaaqaaiaadMgaaeaacaaIYaaaamaabmaabaGaamyzamaaCaaaleqa
baGaamyAaiabeM8a3jaadshaaaGccqGHsislcaWGLbWaaWbaaSqabe
aacqGHsislcaWGPbGaeqyYdCNaamiDaaaaaOGaayjkaiaawMcaaaaa
@9CE0@
We can satisfy this by setting
B
1
(
1−
ω
2
ω
n
2
+
2ςω
ω
n
i
)=K
F
0
B
2
(
1−
ω
2
ω
n
2
−
2ςω
ω
n
i
)=K
F
0
(
λ
2
ω
n
2
+
2ςλ
ω
n
+1
)=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaWgaa
WcbaGaaGymaaqabaGcdaqadaqaaiaaigdacqGHsisldaWcaaqaaiab
eM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiabeM8a3naaDaaaleaaca
WGUbaabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaikdacqaHcpGv
cqaHjpWDaeaacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaOGaamyAaa
GaayjkaiaawMcaaiabg2da9iaadUeacaWGgbWaaSbaaSqaaiaaicda
aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
aGPaVlaadkeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaaigdacq
GHsisldaWcaaqaaiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiab
eM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGccqGHsisldaWcaa
qaaiaaikdacqaHcpGvcqaHjpWDaeaacqaHjpWDdaWgaaWcbaGaamOB
aaqabaaaaOGaamyAaaGaayjkaiaawMcaaiabg2da9iaadUeacaWGgb
WaaSbaaSqaaiaaicdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7daqadaqaamaalaaabaGaeq4UdW2aaW
baaSqabeaacaaIYaaaaaGcbaGaeqyYdC3aa0baaSqaaiaad6gaaeaa
caaIYaaaaaaakiabgUcaRmaalaaabaGaaGOmaiabek8awjabeU7aSb
qaaiabeM8a3naaBaaaleaacaWGUbaabeaaaaGccqGHRaWkcaaIXaaa
caGLOaGaayzkaaGaeyypa0JaaGimaaaa@9E9C@
The first two equations show
that
B
1
=K
F
0
(
1−
ω
2
ω
n
2
+
2ςω
ω
n
i
)
−1
=K
F
0
M(ω/
ω
n
,ζ)
e
iϕ
B
2
=K
F
0
(
1−
ω
2
ω
n
2
−
2ςω
ω
n
i
)
−1
=K
F
0
M(ω/
ω
n
,ζ)
e
−iϕ
M(ω/
ω
n
,ζ)=
1
(
1−
ω
2
ω
n
2
)
2
+
(
2ςω
ω
n
)
2
ϕ=
tan
−1
−2ζω/
ω
n
(1−
ω
2
/
ω
n
2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaGPaVl
aaykW7caaMc8UaamOqamaaBaaaleaacaaIXaaabeaakiabg2da9iaa
dUeacaWGgbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey
OeI0YaaSaaaeaacqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaacqaH
jpWDdaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaae
aacaaIYaGaeqOWdyLaeqyYdChabaGaeqyYdC3aaSbaaSqaaiaad6ga
aeqaaaaakiaadMgaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTi
aaigdaaaGccqGH9aqpcaWGlbGaamOramaaBaaaleaacaaIWaaabeaa
kiaad2eacaGGOaGaeqyYdCNaai4laiabeM8a3naaBaaaleaacaWGUb
aabeaakiaacYcacqaH2oGEcaGGPaGaamyzamaaCaaaleqabaGaamyA
aiabew9aMbaaaOqaaiaaykW7caaMc8UaamOqamaaBaaaleaacaaIYa
aabeaakiabg2da9iaadUeacaWGgbWaaSbaaSqaaiaaicdaaeqaaOWa
aeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacqaHjpWDdaahaaWcbeqaai
aaikdaaaaakeaacqaHjpWDdaqhaaWcbaGaamOBaaqaaiaaikdaaaaa
aOGaeyOeI0YaaSaaaeaacaaIYaGaeqOWdyLaeqyYdChabaGaeqyYdC
3aaSbaaSqaaiaad6gaaeqaaaaakiaadMgaaiaawIcacaGLPaaadaah
aaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaWGlbGaamOramaaBa
aaleaacaaIWaaabeaakiaad2eacaGGOaGaeqyYdCNaai4laiabeM8a
3naaBaaaleaacaWGUbaabeaakiaacYcacqaH2oGEcaGGPaGaamyzam
aaCaaaleqabaGaeyOeI0IaamyAaiabew9aMbaaaOqaaiaad2eacaGG
OaGaeqyYdCNaai4laiabeM8a3naaBaaaleaacaWGUbaabeaakiaacY
cacqaH2oGEcaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaa
daqadaqaaiaaigdacqGHsisldaWcaaqaaiabeM8a3naaCaaaleqaba
GaaGOmaaaaaOqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaa
aaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkda
qadaqaamaalaaabaGaaGOmaiabek8awjabeM8a3bqaaiabeM8a3naa
BaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaai
aaikdaaaaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7cqaHvpGzcqGH9aqpciGG0bGaaiyyai
aac6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWcaaqaaiabgkHi
TiaaikdacqaH2oGEcqaHjpWDcaGGVaGaeqyYdC3aaSbaaSqaaiaad6
gaaeqaaaGcbaGaaiikaiaaigdacqGHsislcqaHjpWDdaahaaWcbeqa
aiaaikdaaaGccaGGVaGaeqyYdC3aa0baaSqaaiaad6gaaeaacaaIYa
aaaOGaaiykaaaaaaaa@DF39@
(we introduced M and
ϕ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373E@
to re-write
B
1
,
B
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGcbWaaSbaaS
qaaiaaigdaaeqaaOGaaiilaiaadkeadaWgaaWcbaGaaGOmaaqabaaa
aa@398D@
in polar form). Finally substitute back for
B
1
,
B
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGcbWaaSbaaS
qaaiaaigdaaeqaaOGaaiilaiaadkeadaWgaaWcbaGaaGOmaaqabaaa
aa@398D@
into the guess for
x
p
(t)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS
qaaiaadchaaeqaaOGaaiikaiaadshacaGGPaaaaa@39F0@
and simplify the solution to see that
x
p
(t)=−
i
2
K
F
0
M(ω/
ω
n
,ζ)(
e
i(ωt+ϕ)
−
e
−i(ωt+ϕ)
)=K
F
0
M(ω/
ω
n
,ζ)sin(ωt+ϕ)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS
qaaiaadchaaeqaaOGaaiikaiaadshacaGGPaGaeyypa0JaeyOeI0Ya
aSaaaeaacaWGPbaabaGaaGOmaaaacaWGlbGaamOramaaBaaaleaaca
aIWaaabeaakiaad2eacaGGOaGaeqyYdCNaai4laiabeM8a3naaBaaa
leaacaWGUbaabeaakiaacYcacqaH2oGEcaGGPaWaaeWaaeaacaWGLb
WaaWbaaSqabeaacaWGPbGaaiikaiabeM8a3jaadshacqGHRaWkcqaH
vpGzcaGGPaaaaOGaeyOeI0IaamyzamaaCaaaleqabaGaeyOeI0Iaam
yAaiaacIcacqaHjpWDcaWG0bGaey4kaSIaeqy1dyMaaiykaaaaaOGa
ayjkaiaawMcaaiabg2da9iaadUeacaWGgbWaaSbaaSqaaiaaicdaae
qaaOGaamytaiaacIcacqaHjpWDcaGGVaGaeqyYdC3aaSbaaSqaaiaa
d6gaaeqaaOGaaiilaiabeA7a6jaacMcaciGGZbGaaiyAaiaac6gaca
GGOaGaeqyYdCNaamiDaiabgUcaRiabew9aMjaacMcaaaa@@
1
ω
n
2
d
2
x
h
d
t
2
+
2ς
ω
n
d
x
h
dt
+
x
h
=C
x
h
(0)=
x
0
−
x
p
(0)=
x
0
−
X
0
sinϕ
d
x
h
dt
|
t=0
=
v
0
−
d
x
p
dt
|
t=0
=
v
0
−
X
0
ωcosϕ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae
aacaaIXaaabaGaeqyYdC3aa0baaSqaaiaad6gaaeaacaaIYaaaaaaa
kmaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadIhadaWgaa
WcbaGaamiAaaqabaaakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOm
aaaaaaGccqGHRaWkdaWcaaqaaiaaikdacqaHcpGvaeaacqaHjpWDda
WgaaWcbaGaamOBaaqabaaaaOWaaSaaaeaacaWGKbGaamiEamaaBaaa
leaacaWGObaabeaaaOqaaiaadsgacaWG0baaaiabgUcaRiaadIhada
WgaaWcbaGaamiAaaqabaGccqGH9aqpcaWGdbaabaGaamiEamaaBaaa
leaacaWGObaabeaakiaacIcacaaIWaGaaiykaiabg2da9iaadIhada
WgaaWcbaGaaGimaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadcha
aeqaaOGaaiikaiaaicdacaGGPaGaeyypa0JaamiEamaaBaaaleaaca
aIWaaabeaakiabgkHiTiaadIfadaWgaaWcbaGaaGimaaqabaGcciGG
ZbGaaiyAaiaac6gacqaHvpGzaeaadaabcaqaamaalaaabaGaamizai
aadIhadaWgaaWcbaGaamiAaaqabaaakeaacaWGKbGaamiDaaaaaiaa
wIa7amaaBaaaleaacaWG0bGaeyypa0JaaGimaaqabaGccqGH9aqpca
WG2bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0YaaqGaaeaadaWcaaqa
aiaadsgacaWG4bWaaSbaaSqaaiaadchaaeqaaaGcbaGaamizaiaads
haaaaacaGLiWoadaWgaaWcbaGaamiDaiabg2da9iaaicdaaeqaaOGa
eyypa0JaamODamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadIfada
WgaaWcbaGaaGimaaqabaGccqaHjpWDciGGJbGaai4BaiaacohacqaH
vpGzaaaa@8B48@
This is identical to the
differential equation for a damped free vibrating system (but with modified
initial conditions), and we can just write down the solution from the preceding
section. Short-cut for calculating steady-state solutions for
forced vibrating systems For example, consider the
base excited system
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=C+K(
1+
2ς
ω
n
d
dt
)
Y
0
sinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0Jaam4qaiabgUcaRiaadUeadaqadaqaaiaaigdacqGHRaWkda
WcaaqaaiaaikdacqaHcpGvaeaacqaHjpWDdaWgaaWcbaGaamOBaaqa
baaaaOWaaSaaaeaacaWGKbaabaGaamizaiaadshaaaaacaGLOaGaay
zkaaGaamywamaaBaaaleaacaaIWaaabeaakiGacohacaGGPbGaaiOB
aiabeM8a3jaadshaaaa@62C9@
We anticipate that the
steady-state solution will have the form
x
p
(t)=
X
0
sin(ωt+ϕ)
X
0
=K
Y
0
M(ω/
ω
n
,ζ)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS
qaaiaadchaaeqaaOGaaiikaiaadshacaGGPaGaeyypa0Jaamiwamaa
BaaaleaacaaIWaaabeaakiGacohacaGGPbGaaiOBaiaacIcacqaHjp
WDcaWG0bGaey4kaSIaeqy1dyMaaiykaiaaykW7caaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG
PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamiwamaaBaaaleaa
caaIWaaabeaakiabg2da9iaadUeacaWGzbWaaSbaaSqaaiaaicdaae
qaaOGaamytaiaacIcacqaHjpWDcaGGVaGaeqyYdC3aaSbaaSqaaiaa
d6gaaeqaaOGaaiilaiabeA7a6jaacMcaaaa@701E@
so we only need to determine
the magnification
M
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@@
and the phase
ϕ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373E@
. We
can do this quickly by (i)Replacing the harmonic function
Y
0
sinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfadaWgaa
WcbaGaaGimaaqabaGcciGGZbGaaiyAaiaac6gacqaHjpWDcaWG0baa
aa@3DA5@
by a complex exponential
Y
0
e
iωt
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbWaaSbaaS
qaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGaamyAaiabeM8a3jaa
dshaaaaaaa@3C0F@
(ii)Substituting
x=C+K
Y
0
M
e
iϕ
e
iωt
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeyypa0
Jaam4qaiabgUcaRiaadUeacaWGzbWaaSbaaSqaaiaaicdaaeqaaOGa
amytaiaadwgadaahaaWcbeqaaiaadMgacqaHvpGzaaGccaWGLbWaaW
baaSqabeaacaWGPbGaeqyYdCNaamiDaaaaaaa@@
into the solution This gives
K
Y
0
M
e
iϕ
(
1−
ω
2
ω
n
2
+i
2ςω
ω
n
)
e
iωt
=K(
1+i
2ςω
ω
n
)
Y
0
e
iωt
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeacaWGzb
WaaSbaaSqaaiaaicdaaeqaaOGaamytaiaadwgadaahaaWcbeqaaiaa
dMgacqaHvpGzaaGcdaqadaqaaiaaigdacqGHsisldaWcaaqaaiabeM
8a3naaCaaaleqabaGaaGOmaaaaaOqaaiabeM8a3naaDaaaleaacaWG
UbaabaGaaGOmaaaaaaGccqGHRaWkcaWGPbWaaSaaaeaacaaIYaGaeq
OWdyLaeqyYdChabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaaaOGa
ayjkaiaawMcaaiaadwgadaahaaWcbeqaaiaadMgacqaHjpWDcaWG0b
aaaOGaeyypa0Jaam4samaabmaabaGaaGymaiabgUcaRiaadMgadaWc
aaqaaiaaikdacqaHcpGvcqaHjpWDaeaacqaHjpWDdaWgaaWcbaGaam
OBaaqabaaaaaGccaGLOaGaayzkaaGaamywamaaBaaaleaacaaIWaaa
beaakiaadwgadaahaaWcbeqaaiaadMgacqaHjpWDcaWG0baaaaaa@68C4@
Hence
M
e
iϕ
=
(
1+i
2ςω
ω
n
)
(
1−
ω
2
ω
n
2
+i
2ςω
ω
n
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaWGLb
WaaWbaaSqabeaacaWGPbGaeqy1dygaaOGaeyypa0ZaaSaaaeaadaqa
daqaaiaaigdacqGHRaWkcaWGPbWaaSaaaeaacaaIYaGaeqOWdyLaeq
yYdChabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaaaOGaayjkaiaa
wMcaaaqaamaabmaabaGaaGymaiabgkHiTmaalaaabaGaeqyYdC3aaW
baaSqabeaacaaIYaaaaaGcbaGaeqyYdC3aa0baaSqaaiaad6gaaeaa
caaIYaaaaaaakiabgUcaRiaadMgadaWcaaqaaiaaikdacqaHcpGvcq
aHjpWDaeaacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaaGccaGLOaGa
ayzkaaaaaaaa@59F8@
Finally, write the complex
numbers on the right hand side in polar form and read off M and
ϕ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373E@
M=
1+
(
2ςω
ω
n
)
2
(
1−
ω
2
ω
n
2
)
2
+
(
2ςω
ω
n
)
2
ϕ=
tan
−1
2ςω
ω
n
−
tan
−1
2ςω
ω
n
(
1−
ω
2
ω
n
2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a
qpdaWcaaqaamaakaaabaGaaGymaiabgUcaRmaabmaabaWaaSaaaeaa
caaIYaGaeqOWdyLaeqyYdChabaGaeqyYdC3aaSbaaSqaaiaad6gaae
qaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeqaaaGc
baWaaOaaaeaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiabeM8a3n
aaCaaaleqabaGaaGOmaaaaaOqaaiabeM8a3naaDaaaleaacaWGUbaa
baGaaGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaa
GccqGHRaWkdaqadaqaamaalaaabaGaaGOmaiabek8awjabeM8a3bqa
aiabeM8a3naaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaada
ahaaWcbeqaaiaaikdaaaaabeaaaaGccaaMc8UaaGPaVlaaykW7caaM
c8UaaGPaVlabew9aMjabg2da9iGacshacaGGHbGaaiOBamaaCaaale
qabaGaeyOeI0IaaGymaaaakmaalaaabaGaaGOmaiabek8awjabeM8a
3bqaaiabeM8a3naaBaaaleaacaWGUbaabeaaaaGccqGHsislciGG0b
Gaaiyyaiaac6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWcaaqa
amaalaaabaGaaGOmaiabek8awjabeM8a3bqaaiabeM8a3naaBaaale
aacaWGUbaabeaaaaaakeaadaqadaqaaiaaigdacqGHsisldaWcaaqa
aiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiabeM8a3naaDaaale
aacaWGUbaabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaaaaa@85C5@
Similarly, to find the
magnification and phase for the rotor-excited system, which has differential
equation
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=C−
K
ω
n
2
d
2
y
d
t
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0Jaam4qaiabgkHiTmaalaaabaGaam4saaqaaiabeM8a3naaDa
aaleaacaWGUbaabaGaaGOmaaaaaaGcdaWcaaqaaiaadsgadaahaaWc
beqaaiaaikdaaaGccaWG5baabaGaamizaiaadshadaahaaWcbeqaai
aaikdaaaaaaaaa@@
we make the substitutions (i)
and (ii) above and simplify the result to see that:
M
e
iϕ
=
ω
2
/
ω
n
2
(
1−
ω
2
ω
n
2
+i
2ςω
ω
n
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaWGLb
WaaWbaaSqabeaacaWGPbGaeqy1dygaaOGaeyypa0ZaaSaaaeaacqaH
jpWDdaahaaWcbeqaaiaaikdaaaGccaGGVaGaeqyYdC3aa0baaSqaai
aad6gaaeaacaaIYaaaaaGcbaWaaeWaaeaacaaIXaGaeyOeI0YaaSaa
aeaacqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaacqaHjpWDdaqhaa
WcbaGaamOBaaqaaiaaikdaaaaaaOGaey4kaSIaamyAamaalaaabaGa
aGOmaiabek8awjabeM8a3bqaaiabeM8a3naaBaaaleaacaWGUbaabe
aaaaaakiaawIcacaGLPaaaaaaaaa@55D6@
Re-write the right hand side
in polar form
M=
ω
2
/
ω
n
2
(
1−
ω
2
ω
n
2
)
2
+
(
2ςω
ω
n
)
2
ϕ=
tan
−1
−2ςω/
ω
n
(
1−
ω
2
ω
n
2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a
qpdaWcaaqaaiabeM8a3naaCaaaleqabaGaaGOmaaaakiaac+cacqaH
jpWDdaqhaaWcbaGaamOBaaqaaiaaikdaaaaakeaadaGcaaqaamaabm
aabaGaaGymaiabgkHiTmaalaaabaGaeqyYdC3aaWbaaSqabeaacaaI
YaaaaaGcbaGaeqyYdC3aa0baaSqaaiaad6gaaeaacaaIYaaaaaaaaO
GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaa
baWaaSaaaeaacaaIYaGaeqOWdyLaeqyYdChabaGaeqyYdC3aaSbaaS
qaaiaad6gaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOm
aaaaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeqy1dy
Maeyypa0JaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaI
XaaaaOWaaSaaaeaacqGHsislcaaIYaGaeqOWdyLaeqyYdCNaai4lai
abeM8a3naaBaaaleaacaWGUbaabeaaaOqaamaabmaabaGaaGymaiab
gkHiTmaalaaabaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaGcbaGaeq
yYdC3aa0baaSqaaiaad6gaaeaacaaIYaaaaaaaaOGaayjkaiaawMca
aaaaaaa@764D@
You
will learn even faster tricks for solving differential equations in circuits
next semester, and perhaps in more advanced level linear systems and control
theory courses. In fact, the pros know
tricks that avoid writing down the differential equation altogether
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
they can just go straight to the
solution! If you want to develop these
superpowers, stick with engineering, and keep writing those generous tuition
checks! The
simple 1DOF systems analyzed in the preceding section are very helpful to
develop a feel for the general characteristics of vibrating systems. They are too simple to approximate most real
systems, however. Real systems have
more than just one degree of freedom. Real systems are also very rarely linear. You may be feeling cheated
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
are the simple idealizations that you get to
see in intro courses really any use? It
turns out that they are, but you can only really be convinced of this if you
know how to analyze more realistic problems, and see that they often behave
just like the simple idealizations. The
motion of systems with many degrees of freedom, or nonlinear systems, cannot
usually be described using simple formulas. Even when they can, the formulas
are so long and complicated that you need a computer to evaluate them. For this reason, introductory courses
typically avoid these topics. However, if
you are willing to use a computer, analyzing the motion of these complex
systems is actually quite straightforward
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
in fact, often easier than using the nasty
formulas we derived for 1DOF systems. This
section of the notes is intended mostly for advanced students, who may be
insulted by simplified models. If you
are feeling insulted, read on… 5.6.1 Equations of motion for undamped
linear systems with many degrees of freedom. We always express the equations of motion for a system
with many degrees of freedom in a standard form. The two degree of freedom system shown in the
picture can be used as an example. We
won’t go through the calculation in detail here (you should be able to derive
it for yourself
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
draw a FBD, use Newton’s law and all that
tedious stuff), but here is the final answer:
m
1
d
2
x
1
d
t
2
+(
k
1
+
k
2
)
x
1
−
k
2
x
2
=0
m
2
d
2
x
2
d
t
2
−
k
2
x
1
+(
k
2
+
k
3
)
x
2
=0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam
aaBaaaleaacaaIXaaabeaakmaalaaabaGaamizamaaCaaaleqabaGa
aGOmaaaakiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaam
iDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaqadaqaaiaadUga
daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGRbWaaSbaaSqaaiaaik
daaeqaaaGccaGLOaGaayzkaaGaamiEamaaBaaaleaacaaIXaaabeaa
kiabgkHiTiaadUgadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaS
qaaiaaikdaaeqaaOGaeyypa0JaaGimaaqaaiaad2gadaWgaaWcbaGa
aGOmaaqabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGcca
WG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadshadaahaaWc
beqaaiaaikdaaaaaaOGaeyOeI0Iaam4AamaaBaaaleaacaaIYaaabe
aakiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaGGOaGaam4A
amaaBaaaleaacaaIYaaabeaakiabgUcaRiaadUgadaWgaaWcbaGaaG
4maaqabaGccaGGPaGaamiEamaaBaaaleaacaaIYaaabeaakiabg2da
9iaaicdaaaaa@@
To
solve vibration problems, we always write the equations of motion in matrix
form. For an undamped system, the matrix
equation of motion always looks like this
M
d
2
x
d
t
2
+Kx=0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaah2eadaWcaa
qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWH4baabaGaamizaiaa
dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaC4saiaahIhacq
GH9aqpcaWHWaaaaa@@
where
x is a vector of the variables
describing the motion,M is
called the ‘mass matrix’ and K is called
the ‘Stiffness matrix’ for the system. For the two spring-mass example, the equation of motion can be written
in matrix form as
[
m
1
0
0
m
2
]
d
2
d
t
2
[
x
1
x
2
]+[
k
1
+
k
2
−
k
2
−
k
2
k
2
+
k
3
][
x
1
x
2
]=[
0
0
]
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae
qabiGaaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaaakeaacaaIWaaa
baGaaGimaaqaaiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLBb
GaayzxaaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaaGcbaGa
amizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOWaamWaaeaafaqabe
GabaaabaGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiaadIhadaWg
aaWcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaGaey4kaSYaamWaae
aafaqabeGacaaabaGaam4AamaaBaaaleaacaaIXaaabeaakiabgUca
RiaadUgadaWgaaWcbaGaaGOmaaqabaaakeaacqGHsislcaWGRbWaaS
baaSqaaiaaikdaaeqaaaGcbaGaeyOeI0Iaam4AamaaBaaaleaacaaI
YaaabeaaaOqaaiaadUgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkca
WGRbWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5waiaaw2faamaadmaa
baqbaeqabiqaaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaaakeaaca
WG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2faaiabg2da
9maadmaabaqbaeqabiqaaaqaaiaaicdaaeaacaaIWaaaaaGaay5wai
aaw2faaaaa@@
For
a system with two masses (or more generally, two degrees of freedom), M and K are 2x2 matrices. For a
system with n degrees of freedom,
they are nxn matrices. The spring-mass system is linear. A nonlinear system has more complicated
equations of motion, but these can always be arranged into the standard matrix
form by assuming that the displacement of the system is small, and linearizing
the equation of motion. For example, the
full nonlinear equations of motion for the double pendulum shown in the figure
are
(
m
1
+
m
2
)
L
1
θ
¨
1
+
m
2
L
2
θ
˙
2
2
sin(
θ
1
−
θ
2
)+
m
2
L
2
θ
¨
2
cos(
θ
1
−
θ
2
)+(
m
1
+
m
2
)gsin
θ
1
=0
m
2
L
2
θ
¨
2
+
m
2
L
1
θ
¨
1
cos(
θ
1
−
θ
2
)−
m
2
L
1
θ
˙
1
2
sin(
θ
1
−
θ
2
)+
m
2
gsin
θ
2
=0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaiikai
aad2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqa
aiaaikdaaeqaaOGaaiykaiaadYeadaWgaaWcbaGaaGymaaqabaGccu
aH4oqCgaWaamaaBaaaleaacaaIXaaabeaakiabgUcaRiaad2gadaWg
aaWcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiaaikdaaeqaaOGafq
iUdeNbaiaadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGcciGGZbGaaiyA
aiaac6gacaGGOaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0
IaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgUcaRiaad2ga
daWgaaWcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiaaikdaaeqaaO
GafqiUdeNbamaadaWgaaWcbaGaaGOmaaqabaGcciGGJbGaai4Baiaa
cohacaGGOaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq
iUde3aaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgUcaRiaacIcacaWG
TbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyBamaaBaaaleaaca
aIYaaabeaakiaacMcacaWGNbGaci4CaiaacMgacaGGUbGaeqiUde3a
aSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaqaaiaad2gadaWgaa
WcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiaaikdaaeqaaOGafqiU
deNbamaadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbWaaSbaaS
qaaiaaikdaaeqaaOGaamitamaaBaaaleaacaaIXaaabeaakiqbeI7a
XzaadaWaaSbaaSqaaiaaigdaaeqaaOGaci4yaiaac+gacaGGZbGaai
ikaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeI7aXnaa
BaaaleaacaaIYaaabeaakiaacMcacqGHsislcaWGTbWaaSbaaSqaai
aaikdaaeqaaOGaamitamaaBaaaleaacaaIXaaabeaakiqbeI7aXzaa
caWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaci4CaiaacMgacaGGUb
GaaiikaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeI7a
XnaaBaaaleaacaaIYaaabeaakiaacMcacqGHRaWkcaWGTbWaaSbaaS
qaaiaaikdaaeqaaOGaam4zaiGacohacaGGPbGaaiOBaiabeI7aXnaa
BaaaleaacaaIYaaabeaakiabg2da9iaaicdaaaaa@A925@
Here,
a single dot over a variable represents a time derivative, and a double dot
represents a second time derivative (i.e. acceleration). These equations look
horrible (and indeed they are
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
the motion of a double pendulum can even be
chaotic), but if we assume that if
θ
1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
aaleaacaaIXaaabeaaaaa@38D7@
,
θ
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
aaleaacaaIYaaabeaaaaa@38D8@
,
and their time derivatives are all small, so that terms involving squares, or
products, of these variables can all be neglected, that and recall that
cos(x)≈1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacogacaGGVb
Gaai4CaiaacIcacaWG4bGaaiykaiabgIKi7kaaigdaaaa@3DCF@
and
sin(x)≈x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb
GaaiOBaiaacIcacaWG4bGaaiykaiabgIKi7kaadIhaaaa@3E16@
for small x,
the equations simplify to
(
m
1
+
m
2
)
L
1
θ
¨
1
+
m
2
L
2
θ
¨
2
+(
m
1
+
m
2
)g
θ
1
=0
m
2
L
2
θ
¨
2
+
m
2
L
1
θ
¨
1
+
m
2
g
θ
2
=0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaiikai
aad2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqa
aiaaikdaaeqaaOGaaiykaiaadYeadaWgaaWcbaGaaGymaaqabaGccu
aH4oqCgaWaamaaBaaaleaacaaIXaaabeaakiabgUcaRiaad2gadaWg
aaWcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiaaikdaaeqaaOGafq
iUdeNbamaadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaGGOaGaamyB
amaaBaaaleaacaaIXaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaG
OmaaqabaGccaGGPaGaam4zaiabeI7aXnaaBaaaleaacaaIXaaabeaa
kiabg2da9iaaicdaaeaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaam
itamaaBaaaleaacaaIYaaabeaakiqbeI7aXzaadaWaaSbaaSqaaiaa
ikdaaeqaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadY
eadaWgaaWcbaGaaGymaaqabaGccuaH4oqCgaWaamaaBaaaleaacaaI
XaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaGccaWGNb
GaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGimaaaaaa@69D4@
Or, in matrix form
[
(
m
1
+
m
2
)
L
1
m
2
L
2
m
2
L
1
m
2
L
2
]
d
2
d
t
2
[
θ
1
θ
2
]+[
(
m
1
+
m
2
)g
0
0
m
2
g
][
θ
1
θ
2
]=[
0
0
]
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae
qabiGaaaqaamaabmaabaGaamyBamaaBaaaleaacaaIXaaabeaakiab
gUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaca
WGmbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyBamaaBaaaleaacaaI
YaaabeaakiaadYeadaWgaaWcbaGaaGOmaaqabaaakeaacaWGTbWaaS
baaSqaaiaaikdaaeqaaOGaamitamaaBaaaleaacaaIXaaabeaaaOqa
aiaad2gadaWgaaWcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiaaik
daaeqaaaaaaOGaay5waiaaw2faamaalaaabaGaamizamaaCaaaleqa
baGaaGOmaaaaaOqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaa
aakmaadmaabaqbaeqabiqaaaqaaiabeI7aXnaaBaaaleaacaaIXaaa
beaaaOqaaiabeI7aXnaaBaaaleaacaaIYaaabeaaaaaakiaawUfaca
GLDbaacqGHRaWkdaWadaqaauaabeqaciaaaeaacaGGOaGaamyBamaa
BaaaleaacaaIXaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaa
qabaGccaGGPaGaam4zaaqaaiaaicdaaeaacaaIWaaabaGaamyBamaa
BaaaleaacaaIYaaabeaakiaadEgaaaaacaGLBbGaayzxaaWaamWaae
aafaqabeGabaaabaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaaGcbaGa
eqiUde3aaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2faaiabg2
da9maadmaabaqbaeqabiqaaaqaaiaaicdaaeaacaaIWaaaaaGaay5w
aiaaw2faaaaa@@
This is again in the
standard form. Throughout
the rest of this section, we will focus on exploring the behavior of systems of
springs and masses. This is not because
spring/mass systems are of any particular interest, but because they are easy
to visualize, and, more importantly the equations of motion for a spring-mass
system are identical to those of any linear system. This could include a realistic mechanical system,
an electrical system, or anything that catches your fancy. (Then again, your fancy may tend more towards
nonlinear systems, but if so, you should keep that to yourself). 5.6.2 Natural frequencies and mode
shapes for undamped linear systems with many degrees of freedom. First,
let’s review the definition of natural frequencies and mode shapes. Recall that
we can set a system vibrating by displacing it slightly from its static
equilibrium position, and then releasing it. In general, the resulting motion will not be harmonic. However, there are certain special initial
displacements that will cause harmonic vibrations. These special initial deflections are called
mode shapes, and the corresponding frequencies of vibration are called natural
frequencies. The
natural frequencies of a vibrating system are its most important property. It is helpful to have a simple way to
calculate them. Fortunately, calculating
natural frequencies turns out to be quite easy (at least on a computer). Recall that the general form of the equation
of motion for a vibrating system is
M
d
2
x
d
t
2
+Kx=0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaah2eadaWcaa
qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWH4baabaGaamizaiaa
dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaC4saiaahIhacq
GH9aqpcaWHWaaaaa@@
where x is a time dependent vector that describes the motion, and M and K are mass and stiffness matrices. Since we are interested in
finding harmonic solutions for x, we
can simply assume that the solution has the form
Xsinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIfaciGGZb
GaaiyAaiaac6gacqaHjpWDcaWG0baaaa@3CB9@
,
and substitute into the equation of motion
−MX
ω
2
sinωt+KXsinωt=0⇒KX=
ω
2
MX
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaah2
eacaWHybGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaci4CaiaacMga
caGGUbGaeqyYdCNaamiDaiabgUcaRiaahUeacaWHybGaci4CaiaacM
gacaGGUbGaeqyYdCNaamiDaiabg2da9iaahcdacaaMc8UaaGPaVlaa
ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey
O0H4TaaC4saiaahIfacqGH9aqpcqaHjpWDdaahaaWcbeqaaiaaikda
aaGccaWHnbGaaCiwaaaa@642D@
The
vectors u and scalars
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37EE@
that satisfy a matrix equation of the form
Ku=λMu
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahUeacaWH1b
Gaeyypa0Jaeq4UdWMaaCytaiaahwhaaaa@3C9A@
are called ‘generalized eigenvectors’ and
‘generalized eigenvalues’ of the equation. It is impossible to find exact formulas for
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37EE@
and u
for a large matrix (formulas exist for up to 5x5 matrices, but they are so
messy they are useless), but MATLAB has built-in functions that will compute
generalized eigenvectors and eigenvalues given numerical values for M and K. The
special values of
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37EE@
satisfying
KX=λMX
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahUeacaWHyb
Gaeyypa0Jaeq4UdWMaaCytaiaahIfaaaa@3C60@
are related to the natural frequencies by
ω
i
=
λ
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGPbaabeaakiabg2da9maakaaabaGaeq4UdW2aaSbaaSqa
aiaadMgaaeqaaaqabaaaaa@3D0F@
The
special vectors X are the ‘Mode
shapes’ of the system. These are the
special initial displacements that will cause the mass to vibrate
harmonically. If
you only want to know the natural frequencies (common) you can use the MATLAB
command d = eig(K,M) This
returns a vector d, containing all the values of
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37EE@
satisfying
Ku=λMu
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahUeacaWH1b
Gaeyypa0Jaeq4UdWMaaCytaiaahwhaaaa@3C9A@
(for an nxn matrix, there are usually n different values). The natural frequencies follow as
ω
i
=
λ
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGPbaabeaakiabg2da9maakaaabaGaeq4UdW2aaSbaaSqa
aiaadMgaaeqaaaqabaaaaa@3D0F@
. If
you want to find both the eigenvalues and eigenvectors, you must use [V,D] = eig(K,M) This
returns two matrices, V and D. Each column of the matrix V corresponds to a
vector u that satisfies the
equation, and the diagonal elements of D contain the corresponding value of
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37EE@
. To extract the ith frequency and mode shape,
use omega = sqrt(D(i,i)) X = V(:,i) For
example, here is a MATLAB function that uses this function to automatically
compute the natural frequencies of the spring-mass system shown in the figure. function [freqs,modes] = compute_frequencies(k1,k2,k3,m1,m2) M = [m1,0;0,m2]; K = [k1+k2,-k2;-k2,k2+k3]; [V,D] = eig(K,M); for i = 1:2 freqs(i) = sqrt(D(i,i)); end modes = V; end You could try running this
with >> [freqs,modes] = compute_frequencies(2,1,1,1,1) This
gives the natural frequencies as
ω
1
=1,
ω
2
=2.236
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaaIXaaabeaakiabg2da9iaaigdacaGGSaGaeqyYdC3aaSba
aSqaaiaaikdaaeqaaOGaeyypa0JaaGOmaiaac6cacaaIYaGaaG4mai
aaiAdaaaa@42D5@
,
and the mode shapes as
X
1
=(−0.707,−0,707)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIfadaWgaa
WcbaGaaGymaaqabaGccqGH9aqpcaGGOaGaeyOeI0IaaGimaiaac6ca
caaI3aGaaGimaiaaiEdacaGGSaGaeyOeI0IaaGimaiaacYcacaaI3a
GaaGimaiaaiEdacaGGPaaaaa@@
(i.e. both masses displace in the same
direction) and
X
2
=(−0.707,0.707)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIfadaWgaa
WcbaGaaGOmaaqabaGccqGH9aqpcaGGOaGaeyOeI0IaaGimaiaac6ca
caaI3aGaaGimaiaaiEdacaGGSaGaaGimaiaac6cacaaI3aGaaGimai
aaiEdacaGGPaaaaa@@
(the two masses displace in opposite
directions. If
you read textbooks on vibrations, you will find that they may give different
formulas for the natural frequencies and vibration modes. (If you read a lot of
textbooks on vibrations there is probably something seriously wrong with your
social life). This is partly because
solving
Ku=λMu
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahUeacaWH1b
Gaeyypa0Jaeq4UdWMaaCytaiaahwhaaaa@3C9A@
for
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37EE@
and u
is rather complicated (especially if you have to do the calculation by hand), and
partly because this formula hides some subtle mathematical features of the
equations of motion for vibrating systems. For example, the solutions to
Ku=λMu
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahUeacaWH1b
Gaeyypa0Jaeq4UdWMaaCytaiaahwhaaaa@3C9A@
are generally complex (
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37EE@
and u
have real and imaginary parts), so it is not obvious that our guess
Xsinωt
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIfaciGGZb
GaaiyAaiaac6gacqaHjpWDcaWG0baaaa@3CB9@
actually satisfies the equation of
motion. It turns out, however, that the
equations of motion for a vibrating system can always be arranged so that M and K are symmetric. In this
case
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37EE@
and u are
real, and
λ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@37EE@
is always positive or zero. The old fashioned formulas for natural
frequencies and vibration modes show this more clearly. But our approach gives the same answer, and
can also be generalized rather easily to solve damped systems (see Section
5.5.5), whereas the traditional textbook methods cannot. 5.6.3 Free vibration of undamped linear
systems with many degrees of freedom.
As
an example, consider a system with n
identical masses with mass m, connected
by springs with stiffness k, as shown
in the picture. Suppose that at time t=0 the masses are displaced from their
static equilibrium position by distances
u
1
,
u
2
...
u
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa
WcbaGaaGymaaqabaGccaGGSaGaamyDamaaBaaaleaacaaIYaaabeaa
kiaac6cacaGGUaGaaiOlaiaadwhadaWgaaWcbaGaamOBaaqabaaaaa@3EF0@
,
and have initial speeds
v
1
,
v
2
....
v
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa
WcbaGaaGymaaqabaGccaGGSaGaamODamaaBaaaleaacaaIYaaabeaa
kiaac6cacaGGUaGaaiOlaiaac6cacaWG2bWaaSbaaSqaaiaad6gaae
qaaaaa@3FA5@
. We would like to calculate the motion of each
mass
x
1
(t),
x
2
(t)...
x
n
(t)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa
WcbaGaaGymaaqabaGccaGGOaGaamiDaiaacMcacaGGSaGaamiEamaa
BaaaleaacaaIYaaabeaakiaacIcacaWG0bGaaiykaiaac6cacaGGUa
GaaiOlaiaadIhadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamiDaiaa
cMcaaaa@45F9@
as a function of time. It
is convenient to represent the initial displacement and velocity as n dimensional vectors u and v, as
u=[
u
1
,
u
2
...
u
n
]
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahwhacqGH9a
qpcaGGBbGaamyDamaaBaaaleaacaaIXaaabeaakiaacYcacaWG1bWa
aSbaaSqaaiaaikdaaeqaaOGaaiOlaiaac6cacaGGUaGaamyDamaaBa
aaleaacaWGUbaabeaakiaac2faaaa@42BE@
,
and
v=[
v
1
,
v
2
...
v
n
]
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhacqGH9a
qpcaGGBbGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacaWG2bWa
aSbaaSqaaiaaikdaaeqaaOGaaiOlaiaac6cacaGGUaGaamODamaaBa
aaleaacaWGUbaabeaakiaac2faaaa@42C2@
. In addition, we must calculate the natural
frequencies
ω
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGPbaabeaaaaa@@
and mode shapes
X
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIfadaWgaa
WcbaGaamyAaaqabaaaaa@@
,
i=1..n for the system. The motion can then be calculated using the
following formula
x(t)=
∑
i=1
n
A
i
X
i
cos
ω
i
t+
B
i
X
i
sin
ω
i
t
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIhacaGGOa
GaamiDaiaacMcacqGH9aqpdaaeWbqaaiaadgeadaWgaaWcbaGaamyA
aaqabaGccaWHybWaaSbaaSqaaiaadMgaaeqaaOGaci4yaiaac+gaca
GGZbGaeqyYdC3aaSbaaSqaaiaadMgaaeqaaOGaamiDaiabgUcaRiaa
dkeadaWgaaWcbaGaamyAaaqabaGccaWHybWaaSbaaSqaaiaadMgaae
qaaOGaci4CaiaacMgacaGGUbGaeqyYdC3aaSbaaSqaaiaadMgaaeqa
aOGaamiDaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabgg
HiLdaaaa@56B7@
where
A
i
=
u⋅
X
i
X
i
⋅
X
i
B
i
=
v⋅
X
i
ω
i
X
i
⋅
X
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeadaWgaa
WcbaGaamyAaaqabaGccqGH9aqpdaWcaaqaaiaahwhacqGHflY1caWH
ybWaaSbaaSqaaiaadMgaaeqaaaGcbaGaaCiwamaaBaaaleaacaWGPb
aabeaakiabgwSixlaahIfadaWgaaWcbaGaamyAaaqabaaaaOGaaGPa
VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8
UaaGPaVlaaykW7caaMc8UaaGPaVlaadkeadaWgaaWcbaGaamyAaaqa
baGccqGH9aqpdaWcaaqaaiaahAhacqGHflY1caWHybWaaSbaaSqaai
aadMgaaeqaaaGcbaGaeqyYdC3aaSbaaSqaaiaadMgaaeqaaOGaaCiw
amaaBaaaleaacaWGPbaabeaakiabgwSixlaahIfadaWgaaWcbaGaam
yAaaqabaaaaaaa@6A74@
Here,
the dot represents an n dimensional
dot product (to evaluate it in matlab, just use the dot() command). This
expression tells us that the general vibration of the system consists of a sum
of all the vibration modes, (which all vibrate at their own discrete
frequencies). You can control how big
the contribution is from each mode by starting the system with different
initial conditions. The mode shapes
X
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIfadaWgaa
WcbaGaamyAaaqabaaaaa@@
have the curious property that the dot
product of two different mode shapes is always zero (
X
1
⋅
X
2
=0
X
1
⋅
X
3
=0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahIfadaWgaa
WcbaGaaGymaaqabaGccqGHflY1caWHybWaaSbaaSqaaiaaikdaaeqa
aOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaahIfadaWgaaWcba
GaaGymaaqabaGccqGHflY1caWHybWaaSbaaSqaaiaaiodaaeqaaOGa
eyypa0JaaGimaaaa@4A3A@
,
etc)
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
so you can see that if the initial
displacements u happen to be the
same as a mode shape, the vibration will be harmonic. The
figure on the right animates the motion of a system with 6 masses, which is set
in motion by displacing the leftmost mass and releasing it. The graph shows the displacement of the
leftmost mass as a function of time. You can download the MATLAB code for this computation here,
and see how the formulas listed in this section are used to compute the motion. The program will predict the motion of a
system with an arbitrary number of masses, and since you can easily edit the
code to type in a different mass and stiffness matrix, it effectively solves any transient vibration problem. 5.6.4 Forced vibration of lightly damped
linear systems with many degrees of freedom. It
is quite simple to find a formula for the motion of an undamped system
subjected to time varying forces. The
predictions are a bit unsatisfactory, however, because their vibration of an
undamped system always depends on the initial conditions. In a real system, damping makes the
steady-state response independent of the initial conditions. However, we can get an approximate solution
for lightly damped systems by finding the solution for an undamped system, and
then neglecting the part of the solution that depends on initial conditions. As
an example, we will consider the system with two springs and masses shown in
the picture. Each mass is subjected to a
harmonic force, which vibrates with some frequency
ω
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@@
(the forces acting on the different masses all
vibrate at the same frequency). The equations of motion are
m
1
d
2
x
1
d
t
2
+(
k
1
+
k
2
)
x
1
−
k
2
x
2
=
F
1
cosωt
m
2
d
2
x
2
d
t
2
−
k
2
x
1
+(
k
2
+
k
3
)
x
2
=
F
2
cosωt
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam
aaBaaaleaacaaIXaaabeaakmaalaaabaGaamizamaaCaaaleqabaGa
aGOmaaaakiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaam
iDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaqadaqaaiaadUga
daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGRbWaaSbaaSqaaiaaik
daaeqaaaGccaGLOaGaayzkaaGaamiEamaaBaaaleaacaaIXaaabeaa
kiabgkHiTiaadUgadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaS
qaaiaaikdaaeqaaOGaeyypa0JaamOramaaBaaaleaacaaIXaaabeaa
kiGacogacaGGVbGaai4CaiabeM8a3jaadshaaeaacaWGTbWaaSbaaS
qaaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaa
aOGaamiEamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG0bWaaW
baaSqabeaacaaIYaaaaaaakiabgkHiTiaadUgadaWgaaWcbaGaaGOm
aaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaiikai
aadUgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGRbWaaSbaaSqa
aiaaiodaaeqaaOGaaiykaiaadIhadaWgaaWcbaGaaGOmaaqabaGccq
GH9aqpcaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaci4yaiaac+gacaGG
ZbGaeqyYdCNaamiDaaaaaa@@
We can write these in
matrix form as
[
m
1
0
0
m
2
]
d
2
d
t
2
[
x
1
x
2
]+[
k
1
+
k
2
−
k
2
−
k
2
k
2
+
k
3
][
x
1
x
2
]=[
F
1
F
2
]
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae
qabiGaaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaaakeaacaaIWaaa
baGaaGimaaqaaiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLBb
GaayzxaaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaaGcbaGa
amizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOWaamWaaeaafaqabe
GabaaabaGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiaadIhadaWg
aaWcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaGaey4kaSYaamWaae
aafaqabeGacaaabaGaam4AamaaBaaaleaacaaIXaaabeaakiabgUca
RiaadUgadaWgaaWcbaGaaGOmaaqabaaakeaacqGHsislcaWGRbWaaS
baaSqaaiaaikdaaeqaaaGcbaGaeyOeI0Iaam4AamaaBaaaleaacaaI
YaaabeaaaOqaaiaadUgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkca
WGRbWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5waiaaw2faamaadmaa
baqbaeqabiqaaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaaakeaaca
WG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2faaiabg2da
9maadmaabaqbaeqabiqaaaqaaiaadAeadaWgaaWcbaGaaGymaaqaba
aakeaacaWGgbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2fa
aaaa@663C@
or, more generally, To
find the steady-state solution, we simply assume that the masses will all
vibrate harmonically at the same frequency as the forces. This means that , , where are the (unknown)
amplitudes of vibration of the two masses. In vector form we could write , where . Substituting this
into the equation of motion gives This is a system of linear equations
for X. They can easily be solved using MATLAB. As an example, here is a simple MATLAB
function that will calculate the vibration amplitude for a linear system with
many degrees of freedom, given the stiffness and mass matrices, and the vector
of forces f. function X = forced_vibration(K,M,f,omega) % Function to calculate steady state amplitude of % a forced linear system. % K is nxn the stiffness matrix % M is the nxn mass matrix % f is the n dimensional force vector % omega is the forcing frequency, in radians/sec. % The function computes a vector X, giving the amplitude of % each degree of freedom % X = (K-M*omega^2)\f; end The function is only one
line long! As
an example, the graph below shows the predicted steady-state vibration
amplitude for the spring-mass system, for the special case where the masses are
all equal , and the springs all have the same stiffness . The first mass is
subjected to a harmonic force , and no force acts on the second mass. Note that the graph shows the magnitude of
the vibration amplitude
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
the formula predicts that for some frequencies
some masses have negative vibration amplitudes, but the negative sign has been
ignored, as the negative sign just means that the mass vibrates out of phase
with the force. Several
features of the result are worth noting: If the forcing frequency is close to
any one of the natural frequencies of the system, huge vibration amplitudes
occur. This phenomenon is known as resonance. You can check the natural frequencies of the
system using the little matlab code in section 5.5.2
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
they turn out to be and . At these frequencies
the vibration amplitude is theoretically infinite. The figure predicts an intriguing new
phenomenon
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
at a magic frequency, the amplitude of
vibration of mass 1 (that’s the mass that the force acts on) drops to
zero. This is called ‘Anti-resonance,’
and it has an important engineering application. Suppose that we have designed a system with a
serious vibration problem (like the London Millenium bridge). Usually, this occurs because some kind of
unexpected force is exciting one of the vibration modes in the system. We can idealize this behavior as a
mass-spring system subjected to a force, as shown in the figure. So how do we stop the system from
vibrating? Our solution for a 2DOF
system shows that a system with two masses will have an anti-resonance. So we simply turn our 1DOF system into a 2DOF
system by adding another spring and a mass, and tune the stiffness and mass of
the new elements so that the anti-resonance occurs at the appropriate
frequency. Of course, adding a mass
will create a new vibration mode, but we can make sure that the new natural
frequency is not at a bad frequency. We
can also add a dashpot in parallel with the spring, if we want
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
this has the effect of making the
anti-resonance phenomenon somewhat less effective (the vibration amplitude will
be small, but finite, at the ‘magic’ frequency), but the new vibration modes
will also have lower amplitudes at resonance. The added spring
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
mass system is called a ‘tuned vibration
absorber.’ This approach was used to solve the Millenium Bridge
vibration problem. 5.6.5 The effects of damping In most design calculations, we don’t worry about
accounting for the effects of damping very accurately. This is partly because it’s very difficult to
find formulas that model damping realistically, and even more difficult to find
values for the damping parameters. Also, the mathematics required to solve damped problems is a bit messy.
Old textbooks don’t cover it, because for practical purposes it is only
possible to do the calculations using a computer. It is not hard to account for the effects of
damping, however, and it is helpful to have a sense of what its effect will be
in a real system. We’ll go through this
rather briefly in this section. Equations of motion: The figure shows a damped spring-mass system. The equations of motion for the system can
easily be shown to be To
solve these equations, we have to reduce them to a system that MATLAB can
handle, by re-writing them as first order equations. We follow the standard procedure to do this
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
define and as new variables, and
then write the equations in matrix form as (This result might not be
obvious to you
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
if so, multiply out the vector-matrix products
to see that the equations are all correct). This is a matrix equation of the
form where y is a vector containing the unknown velocities and positions of
the mass. Free vibration response: Suppose that at time t=0 the system has initial positions and velocities , and we wish to calculate the subsequent motion of the
system. To do this, we must solve the equation of motion. We start by guessing
that the solution has the form (the negative sign is
introduced because we expect solutions to decay with time). Here, is a constant vector,
to be determined. Substituting this
into the equation of motion gives This
is another generalized eigenvalue problem, and can easily be solved with
MATLAB. The solution is much more
complicated for a damped system, however, because the possible values of and that satisfy the
equation are in general complex
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
that is to say, each can be expressed as , where and are positive real numbers, and . This makes more
sense if we recall Euler’s formula (if
you haven’t seen Euler’s formula, try doing a Taylor expansion of both sides of
the equation
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
you will find they are magically equal. If you don’t know how to do a Taylor
expansion, you probably stopped reading this ages ago, but if you are still
hanging in there, just trust me…). So,
the solution is predicting that the response may be oscillatory, as we would
expect. Once all the possible vectors and have been calculated,
the response of the system can be calculated as follows: 1.Construct a
matrix H , in which each column is
one of the possible values of (MATLAB constructs
this matrix automatically) 2.Construct a diagonal matrix (t), which has the form where
each is one of the
solutions to the generalized eigenvalue equation. 3.Calculate a vector a (this represents the amplitudes of the various modes in the
vibration response) that satisfies 4.The vibration response then follows as All
the matrices and vectors in these formulas are complex valued
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
but all the imaginary parts magically
disappear in the final answer. HEALTH
WARNING: The formulas listed here
only work if all the generalized eigenvalues satisfying are different. For
some very special choices of damping, some eigenvalues may be repeated. In this case the formula won’t work. A quick and dirty fix for this is just to
change the damping very slightly, and the problem disappears. Your applied math courses will hopefully
show you a better fix, but we won’t worry about that here. This
all sounds a bit involved, but it actually only takes a few lines of MATLAB code
to calculate the motion of any damped system. As an example, a MATLAB code that
animates the motion of a damped spring-mass system shown in the figure (but
with an arbitrary number of masses) can be downloaded
here. You can use the code to
explore the behavior of the system. In
addition, you can modify the code to solve any linear free vibration problem by
modifying the matrices M and D. Here
are some animations that illustrate the behavior of the system. The animations
below show vibrations of the system with initial displacements corresponding to
the three mode shapes of the undamped system (calculated using the procedure in
Section 5.5.2). The results are shown
for k=m=1 . In each case, the graph plots the motion of the three
masses
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
if a color doesn’t show up, it means one of
the other masses has the exact same displacement. Mode 1 Mode
2 Mode 3 Notice that 1.For each mode,
the displacement history of any mass looks very similar to the behavior of a damped,
1DOF system. 2.The amplitude of the high frequency modes die out much
faster than the low frequency mode. This explains why it is so helpful to understand the
behavior of a 1DOF system. If a more
complicated system is set in motion, its response initially involves
contributions from all its vibration modes. Soon, however, the high frequency modes die out, and the dominant
behavior is just caused by the lowest frequency mode. The animation to the
right demonstrates this very nicely
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
here, the system was started by displacing
only the first mass. The initial
response is not harmonic, but after a short time the high frequency modes stop
contributing, and the system behaves just like a 1DOF approximation. For design purposes, idealizing the system as
a 1DOF damped spring-mass system is usually sufficient. Notice
also that light damping has very little effect on the natural frequencies and
mode shapes
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
so the simple undamped approximation is a good
way to calculate these. Of
course, if the system is very heavily damped, then its behavior changes
completely
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
the system no longer vibrates, and instead
just moves gradually towards its equilibrium position. You can simulate this behavior for yourself
using the matlab code
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
try running it with or higher. Systems of this kind are not of much
practical interest. Steady-state forced vibration response. Finally, we
take a look at the effects of damping on the response of a spring-mass system
to harmonic forces. The equations of
motion for a damped, forced system are This is an equation of the form where we have used Euler’s
famous formula again. We can find a
solution to by guessing that , and substituting into the matrix equation This equation can be solved
for . Similarly, we can
solve by
guessing that , which gives an equation for of the form . You actually don’t need to solve this equation
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
you can simply calculate by just changing the
sign of all the imaginary parts of . The full solution follows as This
is the steady-state vibration response. Just as for the 1DOF system, the general solution also has a transient
part, which depends on initial conditions. We know that the transient solution
will die away, so we ignore it. The
solution for y(t) looks peculiar,
because of the complex numbers. If we
just want to plot the solution as a function of time, we don’t have to worry
about the complex numbers, because they magically disappear in the final
answer. In fact, if we use MATLAB to do
the computations, we never even notice that the intermediate formulas involve
complex numbers. If we do plot the
solution, it is obvious that each mass vibrates harmonically, at the same frequency
as the force (this is obvious from the formula too). It’s not worth plotting the function
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
we are really only interested in the amplitude
of vibration of each mass. This can be calculated as follows 1.Let , denote the components
of and 2.The vibration of
the jth mass then has the form where are
the amplitude and phase of the harmonic vibration of the mass. If
you know a lot about complex numbers you could try to derive these formulas for
yourself. If not, just trust me
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
your math classes should cover this kind of
thing. MATLAB can handle all these
computations effortlessly. As an
example, here is a simple MATLAB script that will calculate the steady-state
amplitude of vibration and phase of each degree of freedom of a forced n degree of freedom system, given the
force vector f, and the matrices M and D that describe the system. function [amp,phase] = damped_forced_vibration(D,M,f,omega) % Function to calculate steady state amplitude of % a forced linear system. % D is 2nx2n the stiffness/damping matrix % M is the 2nx2n mass matrix % f is the 2n dimensional force vector % omega is the forcing frequency, in radians/sec. % The function computes a vector ‘amp’, giving the amplitude
of % each degree of freedom, and a second vector ‘phase’, % which gives the phase of each degree of freedom % Y0 = (D+M*i*omega)\f; % The i
here is sqrt(-1) % We dont need to calculate Y0bar - we can just change the
sign of % the imaginary part of Y0 using the 'conj' command for j =1:length(f)/2 amp(j) =
sqrt(Y0(j)*conj(Y0(j))); phase(j) =
log(conj(Y0(j))/Y0(j))/(2*i); end end Again, the script is very
simple. Here is a graph showing the
predicted vibration amplitude of each mass in the system shown. Note that only mass 1 is subjected to a
force. The important conclusions
to be drawn from these results are: 1.We observe two
resonances, at frequencies very close to the undamped natural frequencies of
the system. 2.For light
damping, the undamped model predicts the vibration amplitude quite accurately,
except very close to the resonance itself (where the undamped model has an
infinite vibration amplitude) 3.In a damped
system, the amplitude of the lowest frequency resonance is generally much
greater than higher frequency modes. For
this reason, it is often sufficient to consider only the lowest frequency mode in
design calculations. This means we can
idealize the system as just a single DOF system, and think of it as a simple
spring-mass system as described in the early part of this chapter. The relative vibration amplitudes of the
various resonances do depend to some extent on the nature of the force
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
it is possible to choose a set of forces that
will excite only a high frequency
mode, in which case the amplitude of this special excited mode will exceed all
the others. But for most forcing, the
lowest frequency one is the one that matters. 5.3 Free vibration of a damped, single degree of
freedom, linear spring mass system.
5.3.2 Using Free Vibrations to Measure
Properties of a System
5.4 Forced vibration of damped, single degree of
freedom, linear spring mass systems.
5.4.1 Equations of Motion for Forced Spring
Mass Systems
5.4.2 Definition of Transient and Steady
State Response.
If you have
looked at the list of solutions to the equations of motion we derived in the
preceding section, you will have discovered that they look horrible. Unless you have a great deal of experience
with visualizing equations, it is extremely difficult to work out what the
equations are telling us.
The applet simply
calculates the solution to the equations of motion using the formulae given in
the list of solutions, and plots graphs showing features of the motion. You can use the sliders to set various
parameters in the system, including the type of forcing, its amplitude and
frequency; spring constant, damping coefficient and mass; as well as the position
and velocity of the mass at time t=0. Note that you can control the properties of
the spring-mass system in two ways: you can either set values for k, m
and
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@@
using the sliders, or you can set
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaaaaa@@
,
K and
ς
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek8awbaa@37DE@
instead.
5.4.3 Summary of Steady-State Response of
Forced Spring Mass Systems.
7 Essential Benefits of Using Insulated Eye Bolts in Electrical Applications
Solution
for Rotor Excitation
5.4.4 Features of the Steady State Response
of Spring Mass Systems to Forced Vibrations.
To
minimize vibrations, we must design the system to make the vibration amplitude
X
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaaaaa@37FD@
as small as possible. The formula for
X
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaaaaa@37FD@
is a bit scary, which is why we plot graphs of
the solution. The graphs show that we
will observe vibrations with large amplitudes if (i) The frequency
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3BA6@
is close to 1; and (ii) the damping
ζ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6baa@37F7@
is small. At first sight, it looks like we could minimize vibrations by making
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3BA6@
very large. This is true in principle, and can be done in some designs, e.g. if the
force acts on a very localized area of the structure, and will only excite a
single vibration mode. For most systems,
this approach will not work, however. This is because real components generally have a very large number of
natural frequencies of vibration, corresponding to different vibration
modes. We could design the system so
that
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3BA6@
is large for the mode with the lowest
frequency
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
and perhaps some others
–
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa
aaaaaapeGaa83eGaaa@@
but there will always be other modes with
higher frequencies, which will have smaller values of
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3BA6@
. There
is a risk that one of these will be close to resonance. Consequently, we generally design the system
so that
ω/
ω
n
<<1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGH8aapcqGH8aapcaaI
Xaaaaa@3E73@
for the mode with the lowest natural
frequency. In fact, design codes usually
specify the minimum allowable value of
ω/
ω
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaaaaa@3BA6@
for vibration critical components. This will guarantee that
ω/
ω
n
<<1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+
cacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccqGH8aapcqGH8aapcaaI
Xaaaaa@3E73@
for all modes, and hence the vibration
amplitude
X
0
→K
F
0
=
F
0
/k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa
WcbaGaaGimaaqabaGccqGHsgIRcaWGlbGaamOramaaBaaaleaacaaI
Waaabeaakiabg2da9iaadAeadaWgaaWcbaGaaGimaaqabaGccaGGVa
Gaam4Aaaaa@40E3@
. This tells us that the best approach to avoid
vibrations is to make the structure as stiff as possible. This will make the natural frequency large,
and will also make
F
0
/k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa
WcbaGaaGimaaqabaGccaGGVaGaam4Aaaaa@@
small.
Designing a suspension or vibration isolation system. Suspensions, and vibration isolation systems,
are examples of base excited systems. In
this case, the system really consists of a mass (the vehicle, or the isolation
table) on a spring (the shock absorber or vibration isolation pad). We expect that the base will vibrate with some
characteristic frequency
ω
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@@
.
Our goal is to design the system to minimize the vibration of the mass.
ω
n
=
k
m
,ς=
c
2
km
,K=1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa
aaleaacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGRbaa
baGaamyBaaaaaSqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOWdyLaeyypa0ZaaSaa
aeaacaWGJbaabaGaaGOmamaakaaabaGaam4Aaiaad2gaaSqabaaaaO
GaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7
caaMc8UaaGPaVlaadUeacqGH9aqpcaaIXaaaaa@@
5.4.6 Using Forced Vibration Response to
Measure Properties of a System.
5.4.7 Example Problems in Forced Vibrations
5.5 Solving differential equations for vibrating systems
1
ω
n
2
d
2
x
d
t
2
+
2ς
ω
n
dx
dt
+x=C−K
F
0
i
2
(
e
iωt
−
e
−iωt
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG
ymaaqaaiabeM8a3naaDaaaleaacaWGUbaabaGaaGOmaaaaaaGcdaWc
aaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizai
aadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaI
YaGaeqOWdyfabaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaaaakmaala
aabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWG4bGa
eyypa0Jaam4qaiabgkHiTiaadUeacaWGgbWaaSbaaSqaaiaaicdaae
qaaOWaaSaaaeaacaWGPbaabaGaaGOmaaaadaqadaqaaiaadwgadaah
aaWcbeqaaiaadMgacqaHjpWDcaWG0baaaOGaeyOeI0IaamyzamaaCa
aaleqabaGaeyOeI0IaamyAaiabeM8a3jaadshaaaaakiaawIcacaGL
Paaaaaa@@
Finally, we must
determine
x
h
(t)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS
qaaiaadIgaaeqaaOGaaiikaiaadshacaGGPaaaaa@39E8@
. By
construction, our guess for
x
h
(t)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9
Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS
qaaiaadIgaaeqaaOGaaiikaiaadshacaGGPaaaaa@39E8@
satisfies
5.6 Introduction to vibration of systems with many degrees of freedom
How to Isolate and Damp Automotive Vibrations: 6 Techniques
Passive isolation is the simplest and most widely used technique for minimizing vibrations. It involves placing elastic or viscoelastic materials, such as rubber, springs, or dampers, between the source of vibration and the receiver. These materials act as buffers that absorb and dissipate some of the vibrational energy, thus reducing its impact on the receiver. Passive isolation is suitable for low to moderate frequency vibrations, but it has some limitations, such as temperature sensitivity, nonlinear behavior, and degradation over time.
One technique of passive isolation is increasing unsprung mass. When there is more mass to move prior to suspension/powertrain mounts and bushings, less energy is transmitted into the vehicle. This might lead to using cast iron knuckles and brake calipers instead of higher cost cast aluminum.
Engine mounts- The engine mounts play a major role in damping the vibrations generated by the engine. Suspensions- All suspension systems are constantly working on absorbing the road surface impacts and keeping the car planted. Tyres- just like suspension tyres absorb the majority of impact due to road undulations. Dead weights- dead weights are commonly used on crankshafts of 3-cylinder cars to reduce down engine vibrations. Design optimization- Aerodynamic shape, lower center of gravity, and equal weight distribution, are some factors an engineer goes through while designing a car to reduce vibration. Vehicle chassis- A well designed, tuned chassis reduces great amount of vibrations. Sounddamping- foam fabric rubber shits absorb vibration
Passive isolation techniques and materials play a crucial role in creating quieter and more comfortable environments, improving the efficiency and longevity of machinery, and enhancing the overall quality of products and structures. However more research is needed to explore materials such as viscoelastics to enable applications in insulation and other isolation purposes.
Active isolation is a more advanced and sophisticated technique that uses sensors, actuators, and controllers to measure and counteract vibrations. The sensors detect the vibration signals and send them to the controller, which calculates the appropriate response and commands the actuators to generate an opposite force or displacement. This way, the active isolation system cancels out the vibration at the source or at the receiver, depending on the configuration. Active isolation is effective for high frequency vibrations, but it requires more complex and expensive components, as well as more power and maintenance.
I believe another simple way to an active isolation is to implement a vibration absorber, similar to those found on airplane wings. They prevent the wings, for example, to vibrate on the same high frequencies and brake. You don’t need to add a damping, because it absorbs the high frequencies and it won’t vibrate in the natural frequency.
Structural damping is another technique that aims to reduce vibrations by modifying the properties of the materials or the geometry of the components. Structural damping can be achieved by adding damping layers or coatings, such as viscoelastic polymers, metals, or ceramics, to the surfaces or interfaces of the vibrating parts. These layers or coatings increase the internal friction and dissipation of the vibrational energy, thus reducing the amplitude and frequency of the vibration. Structural damping can also be achieved by changing the shape or size of the components, such as adding ribs, holes, or slots, to alter their stiffness and natural frequencies.
Most panel radiation is a forced response. Avoid simple panel designs which some designers gravitate toward. Use complex non-symmetric shapes and as mentioned previously ribs. Pay close attention to the cavity mode of the passenger compartment. This will require usually very little energy to excite. Again, insure panels are designed to avoid all simple modes and simple symmetry. Mount masses and/or components off center on panels to decrease the ease at which those panels can be excited. This is all done to avoid panel participation in the cavity mode.
after reading the content of structural damping, I also get to know how the parts(belongs to suspension & its mounts) have to be in vehicle. Im not familiar with structural damping any other points in above mentioned, Along with my driving experience and big fan of suspension engineering, To reduce the vibration transfer from various components within the vehicle have to do design optimization, using different type Of noise isolation packages installation, Sort out the right Spring rate, Damper(shock absorber) what are the modification point required to get optimized damper motion(compression & retard motion). This are the areas have put the effort to restrict the vibrations transferring, choosing right elastomer also.
All the ideas are great for the structural damping. I worked on a project that I added ribs and changed the natural frequency of the chassis, because increased the damping constant. We can improve the structure to have more damping, but still need to be careful about the new natural frequency.
Acoustic damping is a technique that focuses on reducing the noise generated by vibrations, rather than the vibrations themselves. Acoustic damping involves using sound-absorbing or sound-insulating materials, such as foams, fabrics, or composites, to cover or fill the cavities or spaces where noise propagates. These materials reduce the reflection and transmission of sound waves, thus lowering the sound pressure level and improving the acoustic comfort of the vehicle. Acoustic damping can also involve using active noise control systems, which use microphones, speakers, and controllers to generate and emit sound waves that are out of phase with the noise, thus canceling it out.
My anecdotal experience (25+ programs) is first, that all panel radiation is the result of a forced response and is attenuated by mass damping. The second anecdotal discovery is you must develop your damping material optimization with a fully trimmed vehicle. I found the best way to add the least amount of damping material was to release a fully covered pattern. Then in the hardware phase on-road have a test vehicle built with no damping material. Systematically add panel damping based on on-road noise results/targets. You will find carpet, other sound barriers and normal vehicle hardware (like seats) add some parasitic panel damping. They all change the radiation efficiency of the panels they are mounted on. Results: lower mass and cost.
Design optimization is a technique that involves using mathematical models and computational tools to analyze and improve the vibration characteristics of the automotive system. Design optimization can help engineers to identify and eliminate the sources and modes of vibration, as well as to optimize the parameters and variables that affect the vibration behavior, such as mass, stiffness, damping, geometry, and location. Design optimization can also help engineers to evaluate and compare different techniques and solutions for isolating and damping vibrations, as well as to test and validate their performance and feasibility.
Maintenance and monitoring are essential techniques for ensuring the long-term effectiveness and reliability of the vibration isolation and damping systems. Maintenance involves inspecting and replacing the components and materials that are subject to wear and tear, such as rubber mounts, springs, dampers, and damping layers. Monitoring involves using sensors and instruments to measure and record the vibration levels and frequencies, as well as to detect and diagnose any faults or anomalies. Maintenance and monitoring can help engineers to prevent and correct any problems that may compromise the vibration quality and safety of the vehicle.
Vibration can also cause cracks on the structure. There are sensors and also techniques, such as TPA method (transfer path analysis) to identify possible cracks. Once the crack is find, it’s possible to weld the surface to prevent a bigger one. The study of TPA for cracks is a great way to prevent more damage.
In my experience, there isn't a definitive answer; it's a intricate interplay of factors such as design, materials, performance requirements, and local regulations. Early design considerations can prevent unforeseen costs, but not everything can be anticipated, requiring some passive dampening. The key is understanding the needs and navigating the challenge to identify the optimal market solution. If you're interested, Henkel offers engineering support from early design to later-stage solutions.
Can your customers hear your improvements? My experience is when it comes to NVH treatments, there was never enough (per NVH engineers). Even though, there were no real customer concerns. Each vehicle has a background (ambient) noise level. If your additional treatments do not specifically drop the ambient noise in the vehicle, no one will hear your additional treatment (added cost for nothing). Leaving the treatments in is not additive. The more you put in will not necessarily make the vehicle quieter, unless that ambient threshold is breached. Given the optimization of this is not achievable in software, adequate time and resources need to be dedicated in the hardware phase to achieve the quietest, lowest mass and cost vehicle.
In my thinking, First, the engine should be designed to produce less vibrations. Second, the aerodynamic body structure can provide some control. Third, the use of well formulated polymer compound for dampners. These above factors can help in dampening the vibrations and saving the cost incurred in use of dampeners. Thanks. Prabhjot singh.
Since one can rarely eliminate the source and relying on additive solutions have limits in the reduction. I prefer to look at the transfer path as a whole before starting to add to the system. Never forget the transfer path in many cases consists of elements that make up filter systems already. Many times small changes can greatly reduce the output. Sometimes even at a cost or weight savings.
For more information, please visit adss hardware.